Problem 1: Accuracy of Predicted Breeding Values
Use the dataset given below to predict breeding values for the
response variable Weight
using a BLUP animal model. The
model contains Herd
as fixed effect and
BreastCircumference
as regression covariate. Compute
reliabilities (\(B\%\)) for all
predicted breeding values.
Hints
- The phenotypic variance \(\sigma_p^2\) can be computed from the
variance of the weight values given in the dataset.
- Heritability (\(h^2\)) is assumed
to be 0.25 for the trait
Weight
.
Data
The dataset is available from
https://charlotte-ngs.github.io/lbgfs2023/data/beef_data_blup.csv
Your Solution
- Read the data
- Specify the linear mixed effects model
- Setup the mixed model equations (MME)
- Get estimates of fixed effects and predictions of breeding values
from solutions of MME
- Compute accuracies from inverse of coefficient matrix of MME
Latest Changes: 2023-12-04 09:34:18 (pvr)
LS0tCnRpdGxlOiBMaXZlc3RvY2sgQnJlZWRpbmcgYW5kIEdlbm9taWNzIC0gTm90ZWJvb2sgMTIKYXV0aG9yOiBQZXRlciB2b24gUm9ocgpkYXRlOiAnMjAyMy0xMi0wMScKb3V0cHV0OiBodG1sX25vdGVib29rCnBhcmFtczoKICBkb2N0eXBlOgogICAgbGFiZWw6IERvY3VtZW50IFR5cGUKICAgIHZhbHVlOiBzb2x1dGlvbgogICAgY2hvaWNlczoKICAgIC0gZXhlcmNpc2UKICAgIC0gc29sdXRpb24KICAgIC0gbm90ZWJvb2sKICBpc29ubGluZToKICAgIGxhYmVsOiBPbmxpbmUgKHkvbikKICAgIHZhbHVlOiB0cnVlCiAgICBjaG9pY2VzOgogICAgLSB0cnVlCiAgICAtIGZhbHNlCi0tLQoKCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCmBgYHtyIHAxLWluaXQsIGVjaG89RkFMU0V9CmlmICghZXhpc3RzKCJwYXJhbXMiKSkgcGFyYW1zIDwtIGxpc3QoaXNvbmxpbmUgPSBUUlVFKQppZiAocGFyYW1zJGlzb25saW5lKXsKICBzX2JlZWZfZGF0YV9wYXRoIDwtICJodHRwczovL2NoYXJsb3R0ZS1uZ3MuZ2l0aHViLmlvL2xiZ2ZzMjAyMy9kYXRhL2JlZWZfZGF0YV9ibHVwLmNzdiIKfSBlbHNlIHsKICBzX2JlZWZfZGF0YV9wYXRoIDwtIGhlcmU6OmhlcmUoImRvY3MiLCAiZGF0YSIsICJiZWVmX2RhdGFfYmx1cC5jc3YiKQp9Cm5faDJfd2VpZ2h0IDwtIDAuMjUKYGBgCgoKIyMgUHJvYmxlbSAxOiBBY2N1cmFjeSBvZiBQcmVkaWN0ZWQgQnJlZWRpbmcgVmFsdWVzClVzZSB0aGUgZGF0YXNldCBnaXZlbiBiZWxvdyB0byBwcmVkaWN0IGJyZWVkaW5nIHZhbHVlcyBmb3IgdGhlIHJlc3BvbnNlIHZhcmlhYmxlIGBXZWlnaHRgIHVzaW5nIGEgQkxVUCBhbmltYWwgbW9kZWwuIFRoZSBtb2RlbCBjb250YWlucyBgSGVyZGAgYXMgZml4ZWQgZWZmZWN0IGFuZCBgQnJlYXN0Q2lyY3VtZmVyZW5jZWAgYXMgcmVncmVzc2lvbiBjb3ZhcmlhdGUuIENvbXB1dGUgcmVsaWFiaWxpdGllcyAoJEJcJSQpIGZvciBhbGwgcHJlZGljdGVkIGJyZWVkaW5nIHZhbHVlcy4gCgoKIyMjIEhpbnRzCiogVGhlIHBoZW5vdHlwaWMgdmFyaWFuY2UgJFxzaWdtYV9wXjIkIGNhbiBiZSBjb21wdXRlZCBmcm9tIHRoZSB2YXJpYW5jZSBvZiB0aGUgd2VpZ2h0IHZhbHVlcyBnaXZlbiBpbiB0aGUgZGF0YXNldC4gCiogSGVyaXRhYmlsaXR5ICgkaF4yJCkgaXMgYXNzdW1lZCB0byBiZSBgciBuX2gyX3dlaWdodGAgZm9yIHRoZSB0cmFpdCBgV2VpZ2h0YC4gCgoKIyMjIERhdGEKVGhlIGRhdGFzZXQgaXMgYXZhaWxhYmxlIGZyb20KCmBgYHtyLCBlY2hvPUZBTFNFfQpjYXQoc19iZWVmX2RhdGFfcGF0aCkKYGBgCgoKCiMjIyBZb3VyIFNvbHV0aW9uCgoqIFJlYWQgdGhlIGRhdGEKKiBTcGVjaWZ5IHRoZSBsaW5lYXIgbWl4ZWQgZWZmZWN0cyBtb2RlbAoqIFNldHVwIHRoZSBtaXhlZCBtb2RlbCBlcXVhdGlvbnMgKE1NRSkKKiBHZXQgZXN0aW1hdGVzIG9mIGZpeGVkIGVmZmVjdHMgYW5kIHByZWRpY3Rpb25zIG9mIGJyZWVkaW5nIHZhbHVlcyBmcm9tIHNvbHV0aW9ucyBvZiBNTUUKKiBDb21wdXRlIGFjY3VyYWNpZXMgZnJvbSBpbnZlcnNlIG9mIGNvZWZmaWNpZW50IG1hdHJpeCBvZiBNTUUKCgoKCgoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK