Alternative Explanation of Breeding Values

Peter von Rohr

2023-10-13

Alleles

- Look at effect of alleles instead of genotypes
- Compute for each allele: deviation of expected genotypic value from population
- Breeding value is sum of allele deviations

Effect of Allele G_1

Deviation from Population Mean for G_1

• Expected genotypic value (μ_1) for offspring resulting from G_1

 $\mu_1 = p * a + q * d$

* Deviation of μ_1 from population mean μ

$$egin{aligned} &lpha_1 = \mu_1 - \mu \ &= p * a + q * d - [(p-q)a + 2pqd] \ &= q(a + (1-2p)d) \ &= q(a + (q-p)d) \ &= qlpha \end{aligned}$$

Effect of Allele G_2

Deviation from Population Mean for G_2

• Expected genotypic value (μ_2) for offspring resulting from G_2

$$\mu_2 = p * d - q * a$$

* Deviation of μ_2 from population mean μ

$$\alpha_{2} = \mu_{2} - \mu$$

= $p * d - q * a - [(p - q)a + 2pqd]$
= $-pa + pd - 2pqd$
= $-p(a - d + 2qd)$
= $-p(a - (1 - 2q)d)$
= $-p(a + (q - p)d)$
= $-p\alpha$

Properties and Breeding Values

▶ Property: linear in number of G_1

$$\alpha_1 - \alpha_2 = q\alpha - (-p\alpha) = \alpha$$

Breeding values: sum of allele effects