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Consequences of Definition of Breeding Value

▶ Based on the average of a large number of offspring, because
▶ offspring inherit a random sample of parental alleles
▶ average over a large number of offspring reduces sampling

effect
▶ The breeding value is defined as a deviation from the

population mean
▶ population mean depends on allele frequencies which are

specific for each population
▶ hence breeding values can only be compared within one

population.
▶ Because the breeding value is defined as a deviation its

expected value of the breeding value is 0



The Basic Model

yij = vi + eij

= µ + ui + di + ii + eij

where
yij j th record of animal i
µ population mean
vi genotypic value, corresponding to the sum of all

additive (u), dominance (d) and epistatic (ii) ef-
fects of the genotype of animal i

eij random environmental effects of animal i



Re-arranging Terms
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New Model

yij = µi + ui + e∗
ij

where
yij j th record of animal i
µi identifiable fixed environmental effect
ui sum of all additive (u) genetic effects of the genotype

of animal i
e∗

ij dominance, epistatic and random environmental ef-
fects of animal i



Infinitesimal Model

▶ Central Limit Theorem for ui and eij lead to multivariate
normal distributions with
▶ E (u) = 0 and E (e) = 0 and
▶ Known variances and co-variances
▶ No co-variances between ui and eij

▶ µ is assumed to be constant for a given evaluation
▶ Phenotypic observation yij is the sum of two normally

distributed random variables, therefore
▶ yij also follows a multivariate normal distribution
▶ E (y) = µ



Central Limit Theorem
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Figure 1: Distribution of Sums of Different Numbers of Components



Decomposition of Breeding Value

Parent s Parent d

Offspring i Offspring j 

ui = 1/2us + 1/2ud + mi

uj = 1/2us + 1/2ud + mj



Basic Principle of Predicting Breeding Values

Breeding values are predicted according to the following two steps.

1. Observations corrected for the appropriate mean performance
values of animals under the same conditions
▶ conditions are described by the effects captured in µi .

2. The corrected observations are weighted by a certain factor
▶ factor reflects the amount of information available for

prediction



Statistical Perspective

From a statistical point of view:

▶ Given phenotypic observation y as source of information
▶ Use best linear predictor (û) for breeding value u
▶ Hence

û = E (u) + b(y − E (y)) = E (u|y)

▶ with E (u) = 0 → û = b(y − E (y))
▶ b depends on the relationship between y and u
▶ examples will follow . . .



Animal’s Own Performance - Single Record

▶ one phenotypic observation per animal
▶ search for prediction ûi of the breeding value ui of animal i
▶ assume ui and yi known for a certain population

→ plot



Plot u against y
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Regression

▶ red line denotes regression line from ui onto yi
▶ because phenotypes have genetic basis → connection between

ui and yi
▶ measure for slope: regression coefficient b
▶ new genetic model can be interpreted as regression

ui = yij − µi − e∗
ij

▶ Allowing for different slopes in a statistical model, introduces
b

ui = b ∗ (yij − µi) + e∗∗
ij



Regression Coefficient

b = cov(u, y)
var(y)

= cov(u, µ + u + e)
var(y)

= cov(u, u)
var(y)

= var(u)
var(y) = h2

where h2 is called heritability



Prediction

▶ Given a new yi , what would be the predicted ui?
▶ Use regression line and compute ûi

ûi = b ∗ (yi − µ)
= h2 ∗ (yi − µ)



Accuracy

▶ Measured as correlation between true breeding value u and
selection criterion y

ru,y = cov(u, y)
σu σy

= σ2
u

σu σy

= σu
σy

= h



Response To Selection

▶ Why is the accuracy important?
▶ Response to selection depends on it
▶ Example of single record
▶ Breeders equation, quantifying the selection response per

generation

R = i ∗ r2
u,y ∗ σy = i ∗ h2 ∗ σy



Repeated Records

▶ Additional component of variation

var(y) = var(u) + var(pe) + var(te)

t = var(u) + var(pe)
var(y) =

σ2
u + σ2

pe
σ2

y

▶ Predicted breeding value

ûi = b(ỹi − µ)



Regression Coefficient

b = cov(u, ỹ)
var(ỹ)

cov(u, ỹ) = cov(u, u + pe + 1
n

n∑
k=1

tek) = var(u) = σ2
u

var(ỹ) = var(u) + var(pe) + 1
nvar(te)

var(ỹ) = t ∗ σ2
y + 1

n (1 − t) ∗ σ2
y

= 1
n (n ∗ t + (1 − t)) σ2

y

= 1 + (n − 1)t
n σ2

y



Putting Results together

b = cov(u, ỹ)
var(ỹ)

= nσ2
u

(1 + (n − 1)t)σ2
y

= nh2

1 + (n − 1)t



Progeny Records

ûi = b ∗ (ȳi − µ)

where

b = cov(ui , ȳi)
var(ȳi)

Note

ȳi = 1
n

n∑
k=1

yk

where yk is the phenotypic record of progeny k of parent i



Covariance and Variance

cov(ui , ȳi) = cov(ui ,
1
2ui + 1

2
1
n

n∑
k=1

ud ,k + 1
n

n∑
k=1

mk + 1
n

n∑
k=1

ek)

= cov(ui ,
1
2ui)

= 1
2cov(ui , ui) = 1

2σ2
u

var(ȳi) = (t + (1 − t)/n)σ2
y

with t = h2/4



Intra-Class t

▶ Progeny mean

ȳi = 1
n

n∑
k=1

yk = 1
n

n∑
k=1

µ + 1
n

n∑
k=1

uk + 1
n

n∑
k=1

ek

= µ + 1
n

n∑
k=1

(1/2ui + 1/2ud ,k + mk) + 1
n

n∑
k=1

ek

= µ + 1
2ui + 1

n

n∑
k=1

1/2ud ,k + 1
n

n∑
k=1

mk + 1
n

n∑
k=1

ek

▶ Variance

var(ȳi) = var(1
2ui) + var(1

n

n∑
k=1

1/2ud ,k) + var(1
n

n∑
k=1

ek)

with cov(.) = 0, t = var(1
2ui)/var(y) = h2/4



Results

b = 1/2σ2
u

(t + (1 − t)/n)σ2
y

=
1/2h2σ2

y

(1
4h2 + (1 − 1

4h2)/n)σ2
y

= 2nh2

nh2 + (4 − h2)

= 2n
n + (4 − h2)/h2

= 2n
n + k

with k = 4−h2

h2 .


