BLUP

Peter von Rohr

2023-10-27

Recap: Prediction of Breeding Values

Own Performance Records (h²: Heritability)

$$\hat{u}_i = h^2 * (y_i - \mu)$$



$$\hat{u}_i = \frac{nh^2}{1+(n-1)t} * (\bar{y}_i - \mu)$$

with *n*: number of records, *t*: repeatability

Progeny Records

$$\hat{u}_i = rac{2n}{n+k} * (ar{y_i} - \mu) \; \; ext{with} \; \; k = rac{4-h^2}{h^2}$$

with *n*: number of progeny

General Principle

- All methods to predict breeding values follow the same principle
- 1. Correct information sources for some population mean
- 2. Multiply corrected information source by an appropriate factor
- Regression Method

$$\hat{u} = b(y - \mu)$$

- Selection Index
 - uses all available information combined into an index

Selection Index

- will be presented later to estimate aggregate genotype
- Idea: all available information about an animals breeding value is combined into an index of merit (1)
- corresponds to multiple regression approach

$$\hat{u} = I = b_1 * y_1^* + b_2 * y_2^* + \dots + b_k * y_k^* = b^T y^*$$

where *b* the regression coefficients are computed such that the variance $(var(u - \hat{u}))$ of the error is minimal.

Index Weights

Minimization of the variance of the errors means

$$\mathsf{PEV} = \mathsf{var}(u - \hat{u}) = \mathsf{var}(u - I) = \mathsf{var}(u - b^\mathsf{T} y^*)$$

$$= var(u) + var(b^{T}y^{*}) - 2cov(u, (y^{*})^{T}b)$$

$$= \sigma_u^2 + b^T * var(y^*) * b - 2 * b^T * cov(u, (y^*)^T)$$

$$=\sigma_u^2 + b^T * P * b - 2 * b^T * G$$

Solution

• Compute
$$\frac{\partial PEV}{\partial b} = 0$$

 $\frac{\partial PEV}{\partial b} = 2 * P * b - 2 * G = 0$
 $\rightarrow b = P^{-1} * G$

Problem with Correction

Population mean is ideal as correction

$$y = \mu + u + e \quad \rightarrow \quad \bar{y} = \bar{\mu} + \bar{u} + \bar{e} = \mu$$

Because performances are observed in different

- environments and
- time points
- Formation of comparison groups where animals are exposed to the same environments
- The more groups, the better the correction of environmental effects
- The more groups, the smaller the single groups

Bias

- With small comparison groups, it is more likely that mean breeding value of animals in a single group is not 0
- Average performance of all animals in a comparison group

$$\bar{y}_{CG} = \mu + \bar{u}_{CG} + \bar{e}_{CG}$$

* If \bar{u}_{CG} is not 0, the predicted breeding value \hat{u}_i of animal *i* is

$$egin{aligned} \hat{u}_i &= I = b(y_i - (\mu + ar{u}_{CG})) \ &= b(y_i - \mu) - bar{u}_{CG} \ &= \hat{u}_i - bar{u}_{CG} \end{aligned}$$

where $b\bar{u}_{CG}$ is called bias.

Solution - BLUP

- Solution to correction problem in selection index: BLUP
- Estimates environmental effects at the same time as breeding values are predicted
- Linear mixed effects model
- Meaning of BLUP
 - B stands for best → correlation between true (u) and its prediction (û) is maximal or the prediction error variance (var(u û)) is minimal.
 - L stands for linear → predicted breeding values are linear functions of the observations (y)
 - ► U stands for unbiased → expected values of the predicted breeding values are equal to the true breeding values
 - P stands for prediction

Example

Animal	Sire	Dam	Herd	Weaning Weight
12	1	4	1	2.61
13	1	4	1	2.31
14	1	5	1	2.44
15	1	5	1	2.41
16	1	6	2	2.51
17	1	6	2	2.55
18	1	7	2	2.14
19	1	7	2	2.61
20	2	8	1	2.34
21	2	8	1	1.99
22	2	9	1	3.10
23	2	9	1	2.81
24	2	10	2	2.14
25	2	10	2	2.41
26	3	11	2	2.54
27	3	11	2	3.16

$$y_{ij} = \mu + herd_j + e_{ij}$$

- Result: Estimate of effect of herd j
- Try with given dataset

Linear Mixed Effects Model

What about breeding value u_i for animal i?

- Problem: breeding values have a variance σ_{μ}^2
- Cannot be specified in simple linear model

\rightarrow Linear Mixed Effects Model (LME)

$$y_{ijk} = \mu + \beta_j + u_i + e_{ijk}$$

Matrix-Vector Notation

LME for all animals of a population

 \rightarrow use matrix-vector notation

$$y = X\beta + Zu + e$$

where

- y vector of length n of all observations
- β vector of length p of all fixed effects
- X $n \times p$ design matrix linking the fixed effects to the observations
- u vector of length n_u of random effects
- $Z \quad n \times n_u$ design matrix linking random effect to the observations
- *e* vector of length *n* of random residual effects.

Expected Values and Variances

Expected values

$$E(u) = 0$$
 and $E(e) = 0
ightarrow E(y) = Xeta$

Variances

$$var(u) = G$$
 and $var(e) = R$

with $cov(u, e^T) = 0$,

$$var(y) = Z * var(u) * Z^T + var(e) = ZGZ^T + R = V$$

Estimates of unknown Parameters

$$\hat{u} = E(u|y) = GZ^T V^{-1}(y - X\hat{\beta})$$

$$\hat{\beta} = (X^T V^{-1} X)^{-1} X^T V^{-1} y$$

Mixed Model Equations

▶ Problem: V^{-1}

Same solutions obtained with following set of equations

$$\begin{bmatrix} X^{\mathsf{T}}R^{-1}X & X^{\mathsf{T}}R^{-1}Z \\ Z^{\mathsf{T}}R^{-1}X & Z^{\mathsf{T}}R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^{\mathsf{T}}R^{-1}y \\ Z^{\mathsf{T}}R^{-1}y \end{bmatrix}$$

Sire Model

Breeding value of sire as random effect:

$$y = X\beta + Zs + e$$

Example

[2.61]		[1	0		[1	0	0]			$\left\lceil e_1 \right\rceil$	
2.31		1	0		1	0	0	$\begin{bmatrix} s_1 \\ c_2 \end{bmatrix}$		<i>e</i> ₂	
2.44		1	0		1	0	0		<i>e</i> ₃		
2.41		1	0		1	0	0		<i>e</i> ₄		
2.51		0	1	$\left[\beta_{1}\right]$	1	0	0		<i>e</i> 5		
2.55		0	1		1	0	0		<i>e</i> ₆		
2.14		0	1		1	0	0		e7		
2.61	0	0	1		1	0	0		<i>e</i> ₈		
2.34	-	1	0	$\left \beta_2 \right +$	0	1	0	<i>s</i> ₂	+	<i>e</i> 9	
1.99		1	0		0	1	0	<i>s</i> 3		<i>e</i> ₁₀	
3.1		1	0		0	1	0			<i>e</i> ₁₁	
2.81		1	0		0	1	0		e ₁₂		
2.14		0	1		0	1	0		e ₁₃		
2.41		0	1		0	1	0		<i>e</i> ₁₄		
2.54		0	1		0	0	1			e ₁₅	
3.16		0	1		0	0	1			_ <i>e</i> ₁₆ _	

Breeding value for all animals as random effects

$$y = X\beta + Zu + e$$