Variance and Inbreeding

Peter von Rohr

2023-11-24

Assumption

Variance of breeding value u_i: var(u_i) = (A)_{ii}σ²_u
 Diagnoal elements of numerator relationship matrix A

$$(A)_{ii} = (1 + F_i)$$

where

- F_i inbreeding coefficient of animal *i*
- σ_u^2 genetic additive variance
- The higher F_i , the higher the similarity, the higher the variance

 $\rightarrow \text{Contradiction?}$

Variance and Inbreeding

- Relationship between variance and inbreeding
- How does inbreeding affect the genetic variance?
- How do we get inbreeding in a population?
- \rightarrow Population separates into different lines

Population with Inbreeding

Assumptions

N individuals

- self-fertilizing, shedding constant rate of eggs and sperm
- at a given locus: alleles in base population are non-identical by descent
- ► N individuals produce 2N gametes (eggs and sperm) at constant rate
- probability that a pair of gametes taken at random carry identical alleles: 1/2N
- probability corresponds to the inbreeding coefficient (F)

Inbreeding Coefficient

▶ In generation 1:

$$F_1 = \frac{1}{2N}$$

second generation

either de-novo match of alleles or

the same alleles from generation 1

$$F_2 = rac{1}{2N} + (1 - rac{1}{2N}) * F_1$$

• new variable $\Delta F = \frac{1}{2N}$, then

$$F_2 = \Delta F + (1 - \Delta F) * F_1$$

Inbreeding Coefficient II

$$\Delta F = \frac{F_t - F_{t-1}}{1 - F_{t-1}}$$

▶ Panmicitic Index P = 1 - F

$$\frac{P_t}{P_{t-1}} = 1 - \Delta F$$

$$P_t = (1 - \Delta F)^t * P_0 \text{ with } P_0 = 1$$

$$F_t = 1 - (1 - \Delta F)^t$$

Variance of Gene Frequency

► Allele frequencies (p and q) no longer constant in lines → variation

Variance of change of q (same for p)

$$\sigma_{\Delta q}^2 = \frac{p_0 q_0}{2N} = p_0 q_0 \Delta F$$

► Variance of *q* (same for *p*)

$$\sigma_q^2 = p_0 q_0 F$$

Genotype Frequencies

- Average genotype frequency of homozygotes across all lines: $\bar{q^2}$
- Definition of variance

$$\sigma_q^2 = \bar{q^2} - \bar{q}^2$$

where \bar{q} is the mean allele frequency across all lines and hence is the same as q_0 in the base population

Therefore

$$\bar{q^2} = q_0^2 + \sigma_q^2 = q_0^2 + p_0 q_0 F$$

Table 1: Genotype Frequencies for a bi-allelic locus, expressed in terms of inbreeding coefficient ${\it F}$

Genotype	Original Frequencies	Changes due to inbreeding
$ \begin{array}{c} \overline{A_1 A_1} \\ \overline{A_1 A_2} \\ \overline{A_2 A_2} \end{array} $	p_0^2 $2p_0q_0$ q_0^2	$+p_0q_0F \ -2p_0q_0F \ +p_0q_0F$

Changes of Mean Value

Table 2: Derivation of Inbreeding Depression

Genotyp & requency		Value	Value Product	
A_1A_1 A_1A_2 A_2A_2	$ar{p}^2+ar{p}ar{q}F\ 2ar{p}ar{q}-2ar{p}ar{q}F\ ar{q}F\ ar{q}^2+ar{p}ar{q}F$	a d — a	$egin{array}{l} (ar{p}^2+ar{p}ar{q}F) a\ (2ar{p}ar{q}-2ar{p}ar{q}F) d\ -(ar{q}^2+ar{p}ar{q}F) a \end{array}$	

Inbreeding Depression

$$M_F = (\bar{p}^2 + \bar{p}\bar{q}F)a + (2\bar{p}\bar{q} - 2\bar{p}\bar{q}F)d - (\bar{q}^2 + \bar{p}\bar{q}F)a$$

= $a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q} - 2d\bar{p}\bar{q}F$
= $a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q}(1 - F)$
= $M_0 - 2d\bar{p}\bar{q}F$

Changes of Variance

Only additive locusWithin line: as before

$$V_{\overline{G}} = 2(\overline{pq})a^2$$
$$= 2p_0q_0(1-F)$$
$$= V_G(1-F)$$

New variance component: between line

$$var(M) = \sigma_M^2 = 4a^2\sigma_q^2 = 4a^2p_0q_0F = 2FV_G$$

Summary

Table 3: Partitioning of the variance in a population with inbreeding coefficient ${\sf F}$

Source	Variance	
Between lines Within lines Total	$2FV_G$ $(1-F)V_G$ $(1+F)V_G$	