Livestock Breeding and Genomics - Solution 7

Peter von Rohr

2023-10-27

Problem 1: Own Performance

Given is the dataset with weight observations for 12 animals. The heritability (h^2) for the trait is 0.2025. The population mean μ can assumed to be the mean of the weights in the table below.

(
	,	
	٠	

Animal	Weight
1	285
2	282
3	278
4	280
5	281
6	282
7	285
8	282
9	281
10	287
11	281
12	282

The data in the above table can be read from

https://charlotte-ngs.github.io/lbgfs2023/data/lbg_ex07_p1_own_perf.csv

Your Tasks

- Compute the breeding values for all animals given in the table above
- Compute the accuracies of the breeding values of all animals shown in the table above.

Solution

The predicted breeding value \hat{u}_i of animal i is computed as

$$\widehat{u_i} = h^2(y_i - \mu)$$

where h^2 is the heritability given in the problem, y_i is observation of animal i and μ is the population mean. The population mean is to be computed from the mean of the observations. Hence

```
n_mu_weight <- mean(tbl_weight$Weight)</pre>
```

The computed mean is used to predict breeding values as follows

The accuracy for the predicted breeding value is the same for all animals and corresponds to

$$r(u,y) = \frac{cov(u,y)}{\sqrt{var(y) * var(u)}} = \frac{var(u)}{\sqrt{var(y) * var(u)}} = \sqrt{\frac{var(u)}{var(y)}} = h$$

Adding this to the table of results, we get

The results for the predicted breeding values are shown in the following table

Animal	Predicted Breeding Value	Accuracy
1	0.57375	0.45
2	-0.03375	0.45
3	-0.84375	0.45
4	-0.43875	0.45
5	-0.23625	0.45
6	-0.03375	0.45
7	0.57375	0.45
8	-0.03375	0.45
9	-0.23625	0.45
10	0.97875	0.45
11	-0.23625	0.45
12	-0.03375	0.45

Problem 2: Breeding Value Prediction Based on Repeated Observations

Elsa has observations for her birth weight (52 kg) and some more repeated measures for her weight. We assume the heritability to be $h^2 = 0.45$. The population mean for the repeated observations of the weight is 170 kg. The repeatability of the weight measurements is t = 0.65.

The following tables contains all observed values for the weight.

Measurement	Weight
1	52
2	82

3 4 5	112 141 171
6 7	201 231
8 9 10	260 290 320

The data in the above table can be read from

https://charlotte-ngs.github.io/lbgfs2023/data/lbg_ex07_p2_rep_measures.csv

- a) Predict the breeding value for Elsa based on the repeated weight records.
- b) What is the reliability for the predicted breeding value from 2a)?
- c) Compare the reliability from 2b) with the reliability that would result from a prediction of breeding values based on own performance.

Solution

a) The predicted breeding value based on repeated records is

$$\hat{u}_i = \frac{nh^2}{1 + (n-1)t}(\bar{y}_i - \mu) = \frac{10 * 0.45}{1 + (9 * 0.65)}(186 - 170) = 10.51$$

b) The reliability for the predicted breeding value from 2a) is

$$B = r_{u,\bar{y}}^2 = b = \frac{nh^2}{1 + (n-1)t} = \frac{10 * 0.45}{1 + (9 * 0.65)} = 0.66$$

c) The reliability of the predicted breeding values based on repeated records is larger than the reliability of the prediction based on one record. The relation between the two reliabilities is

$$\frac{r_{u,\bar{y}}^2}{r_{u,y}^2} = \frac{n}{1 + (n-1)t} = \frac{10}{1 + (9*0.65)} = 1.46$$

Problem 3: Predict Breeding Values Based on Progeny Records

A few years later Elsa was the dam of 5 offspring. Each of the offspring has a record for weaning weight. Predict the breeding value of Elsa for weaning weight based on the offspring records listed in the following table.

Offspring	Weaning Weight
1	320
2	319
3	320

4	320
5	321

The data in the above table can be read from

https://charlotte-ngs.github.io/lbgfs2023/data/lbg_ex07_p3_prog_rec.csv

The mean and the heritability can be taken the same as in Problems 1 and 2 resulting in $h^2=0.45$ and $\mu=250$

Solution

The predicted breeding value based on progeny records is defined as

$$\hat{u}_i = b * (\bar{y}_i - \mu) \tag{1}$$

where \bar{y}_i corresponds to the mean of the progeny records for animal i, and b is the regression coefficient which can be shown to be

$$b = \frac{2n}{n+k}$$

where n is the number of offspring and k corresponds to

$$k = \frac{4 - h^2}{h^2}$$

Inserting the numbers given in the problem task results in

$$k = \frac{4 - 0.45}{0.45} = 7.89$$

Using the computed value of k allows to get the regression coefficient b.

$$b = \frac{2 * 5}{5 + 7.89} = 0.78$$

The predicted breeding value based on progeny records corresponds to

$$\hat{u_i} = 0.78 * (320 - 250) = 54.31$$