s_data_root <- "https://charlotte-ngs.github.io/lbgfs2024/data"
s_qg_p02 <- file.path(s_data_root, "aural_exam_qg_p02.csv")
tbl_qg_p02 <- readr::read_delim(s_qg_p02, 
                                 delim = ",", 
                                 show_col_types = FALSE)Quantitative Genetics
Given is the following dataset on a single locus with one observation
In [1]:
The dataset shown as table
In [2]:
knitr::kable(tbl_qg_p02)| Animal | SNP_1 | Observation | 
|---|---|---|
| 1 | 0 | 141 | 
| 2 | 0 | 120 | 
| 3 | 2 | 189 | 
| 4 | 1 | 172 | 
| 5 | 1 | 158 | 
| 6 | 1 | 152 | 
| 7 | 1 | 141 | 
| 8 | 0 | 116 | 
| 9 | 1 | 176 | 
| 10 | 0 | 107 | 
| 11 | 1 | 132 | 
| 12 | 1 | 173 | 
| 13 | 1 | 131 | 
| 14 | 0 | 144 | 
| 15 | 1 | 176 | 
| 16 | 1 | 175 | 
| 17 | 0 | 103 | 
| 18 | 1 | 154 | 
| 19 | 2 | 176 | 
| 20 | 0 | 129 | 
| 21 | 2 | 187 | 
| 22 | 1 | 181 | 
| 23 | 1 | 138 | 
| 24 | 1 | 132 | 
| 25 | 0 | 119 | 
| 26 | 0 | 94 | 
| 27 | 1 | 139 | 
| 28 | 0 | 144 | 
| 29 | 0 | 124 | 
| 30 | 0 | 124 | 
Use the above dataset to compute
- the genotypic values \(a\) and \(d\)
- the breeding values for all genotypes
- the dominance deviations for all genotypes
- the genetic additive variance
- the dominance variance