<- "https://charlotte-ngs.github.io/lbgfs2024/data"
s_data_root <- file.path(s_data_root, "aural_exam_qg_p02.csv")
s_qg_p02 <- readr::read_delim(s_qg_p02,
tbl_qg_p02 delim = ",",
show_col_types = FALSE)
Quantitative Genetics
Given is the following dataset on a single locus with one observation
In [1]:
The dataset shown as table
In [2]:
::kable(tbl_qg_p02) knitr
Animal | SNP_1 | Observation |
---|---|---|
1 | 0 | 141 |
2 | 0 | 120 |
3 | 2 | 189 |
4 | 1 | 172 |
5 | 1 | 158 |
6 | 1 | 152 |
7 | 1 | 141 |
8 | 0 | 116 |
9 | 1 | 176 |
10 | 0 | 107 |
11 | 1 | 132 |
12 | 1 | 173 |
13 | 1 | 131 |
14 | 0 | 144 |
15 | 1 | 176 |
16 | 1 | 175 |
17 | 0 | 103 |
18 | 1 | 154 |
19 | 2 | 176 |
20 | 0 | 129 |
21 | 2 | 187 |
22 | 1 | 181 |
23 | 1 | 138 |
24 | 1 | 132 |
25 | 0 | 119 |
26 | 0 | 94 |
27 | 1 | 139 |
28 | 0 | 144 |
29 | 0 | 124 |
30 | 0 | 124 |
Use the above dataset to compute
- the genotypic values \(a\) and \(d\)
- the breeding values for all genotypes
- the dominance deviations for all genotypes
- the genetic additive variance
- the dominance variance