
Chapter 2

Basics in Quantitative
Genetics

As already mentioned in section 1.3.1, the central dogma of molecular biology
tells us that the genotype is the basics of any phenotypic expression. The
genotype of an individual is composed of a number of genes which are also called
loci. In this section, we start with the simplest possible genetic architecture
where the genotype is composed by just one locus. The connection between
the genotype and the phenotype is modeled according to equation (1.1). The
phenotype is assumed to be a quantitative trait. That means we are not looking
at binary or categorical traits. Categorical traits can just take a limited number
of different levels. Examples of categorical traits are the horn status in cattle or
certain color characteristics. Quantitative traits do not take discrete levels but
they show specific distributions.

2.1 Single Locus - Quantitative Trait

In Livestock there are not many examples where a quantitative trait is influenced
by just one locus. But this case helps in understanding the foundation of more
complex genetic architectures. We start by looking at the following idealized
population (Figure 2.1).

2.1.1 Terminology

The different genetic variants that are present at our Locus 𝐺 are called alleles.
When looking at all individuals in the population for our locus, we have two
different alleles 𝐺1 and 𝐺2. Hence, we call the locus 𝐺 to be a bi-allelic locus.
In any given individual of the population, the two alleles of the locus 𝐺 together
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Figure 2.1: Idealized Population With A Single Locus

are called the individuals genotype. All possible combinations of the two alleles
at the locus 𝐺 leads to a total number of three genotypes. It is important to
mention that the order of the alleles in a given genotype is not important. Hence,𝐺1𝐺2 and 𝐺2𝐺1 are the same genotype. The two genotypes 𝐺1𝐺1 and 𝐺2𝐺2
are called homozygous and the genotype 𝐺1𝐺2 is called heterozygous.

2.2 Frequencies

To be able to characterize our population with respect to the locus of interest, we
are first looking at some frequencies. These are measures of how often a certain
allele or genotype does occur in our population. For our example population
shown in Figure 2.1, the genotype frequencies are
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Table 2.1: Genotype Frequencies under Hardy-Weinberg equilibrium

Alleles 𝐺1 𝐺2𝐺1 𝑓(𝐺1𝐺1) = 𝑝2 𝑓(𝐺1𝐺2) = 𝑝 ∗ 𝑞𝐺2 𝑓(𝐺1𝐺2) = 𝑝 ∗ 𝑞 𝑓(𝐺2𝐺2) = 𝑞2

𝑓(𝐺1𝐺1) = 410 = 0.4𝑓(𝐺1𝐺2) = 310 = 0.3𝑓(𝐺2𝐺2) = 310 = 0.3 (2.1)

The allele frequencies can be determined either by counting or they can be
computed from the genotype frequencies.

𝑓(𝐺1) = 𝑓(𝐺1𝐺1) + 12 ∗ 𝑓(𝐺1𝐺2) = 0.55𝑓(𝐺2) = 𝑓(𝐺2𝐺2) + 12 ∗ 𝑓(𝐺1𝐺2) = 0.45 (2.2)

2.3 Hardy-Weinberg Equilibrium

The Hardy-Weinberg equilibrium is the central law of how allele frequencies
and genotype frequencies are related in an idealized population. Given the
allele frequencies

𝑓(𝐺1) = 𝑝𝑓(𝐺2) = 𝑞 = 1 − 𝑝 (2.3)

During mating, we assume that in an idealized population alleles are combined
independently. This leads to the genotype frequencies shown in Table 2.1.
Summing up the heterozygous frequencies leads to

𝑓(𝐺1𝐺1) = 𝑝2𝑓(𝐺1𝐺2) = 2𝑝𝑞𝑓(𝐺2𝐺2) = 𝑞2 (2.4)
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Comparing these expected genotype frequencies in a idealized population under
the Hardy-Weinberg equilibrium to what we found for the small example pop-
ulation in Figure 2.1, we can clearly say that the small example population is
not in Hardy-Weinberg equilibrium.

2.4 Value and Mean

Our goal is still to improve our population at the genetic level. The term im-
provement implies the need for a quantitative assessment of our trait of interest.
Furthermore, we have to be able to associate the genotypes in the population
to the quantitative values of our trait.

2.4.1 Genotypic Values

The values 𝑉𝑖𝑗 to each genotype 𝐺𝑖𝐺𝑗 are assigned as shown in Figure 2.2.
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Figure 2.2: Genotypic Values

The origin of the genotypic values is placed in the middle between the two
homozygous genotypes 𝐺2𝐺2 and 𝐺1𝐺1. Here we are assuming that 𝐺1 is the
favorable allele. This leads to values of +𝑎 for genotype 𝐺1𝐺1 and of −𝑎 for
genotype 𝐺2𝐺2. The value of genotype 𝐺1𝐺2 is set to 𝑑 and is called dominance
deviation. Table 2.2 summarizes the values for all genotypes.



2.4. VALUE AND MEAN 21

Table 2.2: Values for all Genotypes

Variable Genotype Values𝑉11 𝐺1𝐺1 a𝑉12 𝐺1𝐺2 d𝑉22 𝐺2𝐺2 -a

2.4.2 Population Mean

For the complete population, we can compute the population mean (𝜇) of
all values at the locus 𝐺. This mean corresponds to the expected value and is
computed as

𝜇 = 𝑉11 ∗ 𝑓(𝐺1𝐺1) + 𝑉12 ∗ 𝑓(𝐺1𝐺2) + 𝑉22 ∗ 𝑓(𝐺2𝐺2)= 𝑎 ∗ 𝑝2 + 𝑑 ∗ 2𝑝𝑞 + (−𝑎) ∗ 𝑞2= (𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑 (2.5)

The population mean depends on the values 𝑎 and 𝑑 and on the allele frequencies𝑝 and 𝑞. The larger the difference between 𝑝 and 𝑞 the more influence the value𝑎 has in 𝜇, because for very different 𝑝 and 𝑞 the product 2𝑝𝑞 is very small.
On the other hand, if 𝑝 = 𝑞 = 0.5, then 𝜇 = 0.5𝑑. For loci with 𝑑 = 0, the
population mean 𝜇 = (𝑝 − 𝑞)𝑎 and hence, if in addition we have 𝑝 = 𝑞, then𝜇 = 0.

2.4.3 Breeding Values

The term breeding value is defined as shown in Definition ??.
Applying this definition and using the parameters that we have computed so
far leads to the following formulas for the breeding value of an animal with a
certain genotype.

2.4.3.1 Breeding value for 𝐺1𝐺1
Assume that we have a given parent 𝑆 with a genotype 𝐺1𝐺1 and we want to
compute its breeding value. Let us further suppose that our single parent 𝑆 is
mated to a potentially infinite number of animals from the idealized population,
then we can deduce the following mean genotypic value for the offspring of parent𝑆.
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Mates of 𝑆𝑓(𝐺1) = 𝑝 𝑓(𝐺2) = 𝑞
Parent 𝑆𝑓(𝐺1) = 1 𝑓(𝐺1𝐺1) = 𝑝 𝑓(𝐺1𝐺2) = 𝑞

Because parent 𝑆 has genotype 𝐺1𝐺1, the frequency 𝑓(𝐺1) of a 𝐺1 allele coming
from 𝑆 is 1 and the frequency 𝑓(𝐺2) of a 𝐺2 allele is 0. The expected genetic
value (𝜇11) of the offspring of animal 𝑆 can be computed as

𝜇11 = 𝑝 ∗ 𝑎 + 𝑞 ∗ 𝑑 (2.6)

Applying definition ??, we can compute the breeding value (𝐵𝑉11) for animal 𝑆
as shown in equation (2.7) while using the results given by equations (2.6) and
(2.5).

𝐵𝑉11 = 2 ∗ (𝜇11 − 𝜇)= 2 (𝑝𝑎 + 𝑞𝑑 − [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑])= 2 (𝑝𝑎 + 𝑞𝑑 − (𝑝 − 𝑞)𝑎 − 2𝑝𝑞𝑑)= 2 (𝑞𝑑 + 𝑞𝑎 − 2𝑝𝑞𝑑)= 2 (𝑞𝑎 + 𝑞𝑑(1 − 2𝑝))= 2𝑞 (𝑎 + 𝑑(1 − 2𝑝))= 2𝑞 (𝑎 + (𝑞 − 𝑝)𝑑) (2.7)

Breeding values for parents with genotypes 𝐺2𝐺2 and 𝐺1𝐺2 are derived analo-
gously.

2.4.3.2 Breeding value for 𝐺2𝐺2
First, we determine the expected genotypic value for offsprings of a parent 𝑆
with genotype 𝐺2𝐺2

Mates of parent 𝑆𝑓(𝐺1) = 𝑝 𝑓(𝐺2) = 𝑞
Parent 𝑆𝑓(𝐺2) = 1 𝑓(𝐺1𝐺2) = 𝑝 𝑓(𝐺2𝐺2) = 𝑞
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The expected genetic value (𝜇22) of the offspring of animal 𝑆 can be computed
as

𝜇22 = 𝑝𝑑 − 𝑞𝑎 (2.8)

The breeding value 𝐵𝑉22 corresponds to

𝐵𝑉22 = 2 ∗ (𝜇22 − 𝜇)= 2 (𝑝𝑑 − 𝑞𝑎 − [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑])= 2 (𝑝𝑑 − 𝑞𝑎 − (𝑝 − 𝑞)𝑎 − 2𝑝𝑞𝑑)= 2 (𝑝𝑑 − 𝑝𝑎 − 2𝑝𝑞𝑑)= 2 (−𝑝𝑎 + 𝑝(1 − 2𝑞)𝑑)= −2𝑝 (𝑎 + (𝑞 − 𝑝)𝑑) (2.9)

2.4.3.3 Breeding value for 𝐺1𝐺2
The genotype frequencies of the offsprings of a parent 𝑆 with a genotype 𝐺1𝐺2
is determined in the following table.

Mates of parent 𝑆𝑓(𝐺1) = 𝑝 𝑓(𝐺2) = 𝑞
Parent 𝑆𝑓(𝐺1) = 0.5 𝑓(𝐺1𝐺1) = 0.5𝑝 𝑓(𝐺1𝐺2) = 0.5𝑞𝑓(𝐺2) = 0.5 𝑓(𝐺1𝐺2) = 0.5𝑝 𝑓(𝐺2𝐺2) = 0.5𝑞

The expected mean genotypic value of the offsprings of parent 𝑆 with genotype𝐺1𝐺2 is computed as

𝜇12 = 0.5𝑝𝑎 + 0.5𝑑 − 0.5𝑞𝑎 = 0.5 [(𝑝 − 𝑞)𝑎 + 𝑑] (2.10)

The breeding value 𝐵𝑉12 corresponds to
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𝐵𝑉12 = 2 ∗ (𝜇12 − 𝜇)= 2 (0.5(𝑝 − 𝑞)𝑎 + 0.5𝑑 − [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑])= 2 (0.5𝑝𝑎 − 0.5𝑞𝑎 + 0.5𝑑 − 𝑝𝑎 + 𝑞𝑎 − 2𝑝𝑞𝑑)= 2 (0.5(𝑞 − 𝑝)𝑎 + (0.5 − 2𝑝𝑞)𝑑)= (𝑞 − 𝑝)𝑎 + (1 − 4𝑝𝑞)𝑑= (𝑞 − 𝑝)𝑎 + (𝑝2 + 2𝑝𝑞 + 𝑞2 − 4𝑝𝑞)𝑑= (𝑞 − 𝑝)𝑎 + (𝑝2 − 2𝑝𝑞 + 𝑞2)𝑑= (𝑞 − 𝑝)𝑎 + (𝑞 − 𝑝)2𝑑= (𝑞 − 𝑝) [𝑎 + (𝑞 − 𝑝)𝑑] (2.11)

2.4.3.4 Summary of Breeding Values

The term 𝑎+(𝑞 −𝑝)𝑑 appears in all three breeding values. We replace this term
by 𝛼 and summarize the results in the following table.

Genotype Breeding Value𝐺1𝐺1 2𝑞𝛼𝐺1𝐺2 (𝑞 − 𝑝)𝛼𝐺2𝐺2 −2𝑝𝛼
2.4.4 Allele Substitution

Comparing the genotype 𝐺2𝐺2 with the genotype 𝐺1𝐺2, one of the differences
is in the number of 𝐺1-alleles. 𝐺2𝐺2 has zero 𝐺1-alleles and 𝐺1𝐺2 has one𝐺1-allele.
Let us imagine that we take animal 𝑖 with a 𝐺2𝐺2 genotype and use the
CRISPR-CAS genome editing technology to replace one of the 𝐺2 alleles in
animal 𝑖 by a 𝐺1 allele (see Figure 2.3). After applying the gene editing proce-
dure to animal 𝑖 at locus 𝐺, animal 𝑖 would have genotype 𝐺1𝐺2.
Due to the application of genome editing at locus 𝐺 of animal 𝑖 the breeding
value changed. Before the genome editing procedure it was 𝐵𝑉22 and after
genome editing the breeding value of animal 𝑖 corresponds to 𝐵𝑉12. So the
effect of replacing a 𝐺2 allele by a 𝐺1 allele on the breeding value corresponds
to the difference 𝐵𝑉12 − 𝐵𝑉22. The computation of this difference between the
breeding value 𝐵𝑉12 and 𝐵22 results in
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Figure 2.3: Schematic Depiction of Genome Editing on Animal i

𝐵𝑉 12 − 𝐵𝑉22 = (𝑞 − 𝑝)𝛼 − (−2𝑝𝛼)= (𝑞 − 𝑝)𝛼 + 2𝑝𝛼= (𝑞 − 𝑝 + 2𝑝)𝛼= (𝑞 + 𝑝)𝛼= 𝛼 (2.12)

The analogous computation can be done by comparing the breeding values 𝐵𝑉11
and 𝐵𝑉12.

𝐵𝑉11 − 𝐵𝑉12 = 2𝑞𝛼 − (𝑞 − 𝑝)𝛼= (2𝑞 − (𝑞 − 𝑝)) 𝛼= 𝛼 (2.13)

Because the differences between breeding values computed in (2.12) and (2.13)
are equal, we can conclude that the breeding values show a linear dependence
on the number of 𝐺1 alleles. This is the reason why the breeding values are
also called additive effects, because adding a further 𝐺1 allele instead of a 𝐺2
allel has always the same effect on the breeding values, namely just adding the
constant allele substitution effect 𝛼.
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2.4.5 Dominance Deviation

When looking at the difference between the genotypic value 𝑉𝑖𝑗 and the breeding
value 𝐵𝑉𝑖𝑗 for each of the three genotypes, we get the following results.

𝑉11 − 𝐵𝑉11 = 𝑎 − 2𝑞𝛼= 𝑎 − 2𝑞 [𝑎 + (𝑞 − 𝑝)𝑑]= 𝑎 − 2𝑞𝑎 − 2𝑞(𝑞 − 𝑝)𝑑= 𝑎(1 − 2𝑞) − 2𝑞2𝑑 + 2𝑝𝑞𝑑= [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑] − 2𝑞2𝑑= 𝜇 + 𝐷11 (2.14)

𝑉12 − 𝐵𝑉 12 = 𝑑 − (𝑞 − 𝑝)𝛼= 𝑑 − (𝑞 − 𝑝) [𝑎 + (𝑞 − 𝑝)𝑑]= [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑] + 2𝑝𝑞𝑑= 𝜇 + 𝐷12 (2.15)

𝑉22 − 𝐵𝑉22 = −𝑎 − (−2𝑝𝛼)= −𝑎 + 2𝑝 [𝑎 + (𝑞 − 𝑝)𝑑]= [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑] − 2𝑝2𝑑= 𝜇 + 𝐷22
The difference all contain the population mean 𝜇 plus a certain deviation. This
deviation term is called dominance deviation.

2.4.6 Summary of Values

The following table summarizes all genotypic values all breeding values and the
dominance deviations.

Genotyp genotypic value Breeding Value Dominance Deviation𝐺𝑖𝐺𝑗 𝑉𝑖𝑗 𝐵𝑉𝑖𝑗 𝐷𝑖𝑗𝐺1𝐺1 𝑎 2𝑞𝛼 −2𝑞2𝑑𝐺1𝐺2 𝑑 (𝑞 − 𝑝)𝛼 2𝑝𝑞𝑑𝐺2𝐺2 −𝑎 −2𝑝𝛼 −2𝑝2𝑑
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The formulas in the above shown table assume that 𝐺1 is the favorable allele
with frequency 𝑓(𝐺1) = 𝑝. The allele frequency of 𝐺2 is 𝑓(𝐺2) = 𝑞. Since we
have a bi-allelic locus 𝑝 + 𝑞 = 1.
Based on the definition of dominance deviation, the genotypic values 𝑉𝑖𝑗 can be
decomposed into the components population mean (𝜇), breeding value (𝐵𝑉𝑖𝑗)
and dominance deviation (𝐷𝑖𝑗) according to equation (2.16).

𝑉𝑖𝑗 = 𝜇 + 𝐵𝑉𝑖𝑗 + 𝐷𝑖𝑗 (2.16)

Taking expected values on both sides of equation (2.16) and knowing that the
population mean 𝜇 was defined as the expected value of the genotypic values in
the population, i.e. 𝐸 [𝑉 ] = 𝜇, it follows that the expected values of both the
breeding values and the dominance deviations must be 0. More formally, we
have

𝐸 [𝑉 ] = 𝐸 [𝜇 + 𝐵𝑉 + 𝐷]= 𝐸 [𝜇] + 𝐸 [𝐵𝑉 ] + 𝐸 [𝐷]= 𝜇 (2.17)

From the last line in equation (2.17), it follows that 𝐸 [𝐵𝑉 ] = 𝐸 [𝐷] = 0. This
also shows that both breeding values and dominance deviations are defined as
deviation from a given mean.

2.5 Variances

The population mean 𝜇 and derived from that the breeding values were defined
as expected values. Their main purpose is to assess the state of a given pop-
ulation with respect to a certain genetic locus and its effect on a phenotypic
trait of interest. One of our primary goals in livestock breeding is to improve
the populations at the genetic level through the means of selection and mat-
ing. Selection of potential parents that produce offspring that are closer to our
breeding goals is only possible, if the selection candidates show a certain level
of variation in the traits that we are interested in. In populations where there
is no variation which means that all individuals are exactly at the same level, it
is not possible to select potential parents for the next generation.
In statistics the measure that is most often used to assess variation in a certain
population is called variance. For any given discrete random variable 𝑋 the
variance is defined as the second central moment of 𝑋 which is computed as
shown in equation (2.18).
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𝑉 𝑎𝑟 [𝑋] = ∑𝑥𝑖∈𝒳(𝑥𝑖 − 𝜇𝑋)2 ∗ 𝑓(𝑥𝑖) (2.18)

where 𝒳: set of all possible 𝑥-values𝑓(𝑥𝑖) probability that 𝑥 assumes the value of𝑥𝑖𝜇𝑋 expected value 𝐸 [𝑋] of 𝑋
In this section we will be focusing on separating the obtained variances into dif-
ferent components according to their causative sources. Applying the definition
of variance given in equation (2.18) to the genotypic values 𝑉𝑖𝑗, we obtain the
following expression.

𝜎2𝐺 = 𝑉 𝑎𝑟 [𝑉 ] = (𝑉11 − 𝜇)2 ∗ 𝑓(𝐺1𝐺1)+ (𝑉12 − 𝜇)2 ∗ 𝑓(𝐺1𝐺2)+ (𝑉22 − 𝜇)2 ∗ 𝑓(𝐺2𝐺2) (2.19)

where 𝜇 = (𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑 the population mean.
Based on the decomposition of the genotypic value 𝑉𝑖𝑗 given in (2.16), the
difference between 𝑉𝑖𝑗 and 𝜇 can be written as the sum of the breeding value
and the dominance deviation. Then 𝜎2𝐺 can be written as

𝜎2𝐺 = 𝑉 𝑎𝑟 [𝑉 ] = (𝐵𝑉11 + 𝐷11)2 ∗ 𝑓(𝐺1𝐺1)+ (𝐵𝑉12 + 𝐷12)2 ∗ 𝑓(𝐺1𝐺2)+ (𝐵𝑉22 + 𝐷22)2 ∗ 𝑓(𝐺2𝐺2) (2.20)

Inserting the expressions for the breeding values 𝐵𝑉𝑖𝑗 and for the dominance
deviation 𝐷𝑖𝑗 found earlier and simplifying the equation leads to the result in
(2.21). A more detailed derivation of 𝜎2𝐺 is given in the appendix (2.6) of this
chapter.

𝜎2𝐺 = 2𝑝𝑞𝛼2 + (2𝑝𝑞𝑑)2= 𝜎2𝐴 + 𝜎2𝐷 (2.21)

The formula in equation (2.21) shows that 𝜎2𝐺 consists of two components. The
first component 𝜎2𝐴 is called the genetic additive variance and the second
component 𝜎2𝐷 is termed dominance variance. As shown in equation (2.23)𝜎2𝐴 corresponds to the variance of the breeding values. Because we have already
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seen that the breeding values are additive in the number of favorable alleles,𝜎2𝐴 is called genetic additive variance. Because 𝜎2𝐷 corresponds to the variance
of the dominance deviation effects (see equation (2.25)) it is called dominance
variance.

2.6 Appendix: Derivations

This section shows how the genetic variance in equation (2.21) is computed.

𝜎2𝐺 = (𝐵𝑉11 + 𝐷11)2 ∗ 𝑝2+ (𝐵𝑉12 + 𝐷12)2 ∗ 2𝑝𝑞+ (𝐵𝑉22 + 𝐷22)2 ∗ 𝑞2= (2𝑞𝛼 − 2𝑞2𝑑)2 ∗ 𝑝2+ ((𝑞 − 𝑝)𝛼 + 2𝑝𝑞𝑑)2 ∗ 2𝑝𝑞+ (−2𝑝𝛼 − 2𝑝2𝑑)2 ∗ 𝑞2= (4𝑞2𝛼2 − 8𝑞3𝑑𝛼 + 4𝑞4𝑑2) ∗ 𝑝2+ (𝑞2𝛼2 − 2𝑝𝑞𝛼2 + 𝑝2𝛼2 − 4(𝑞 − 𝑝)𝑝𝑞𝑑𝛼 + 4𝑝2𝑞2𝑑2) ∗ 2𝑝𝑞+ (4𝑝2𝛼2 + 8𝑝3𝑑𝛼 + 4𝑝4𝛼2) ∗ 𝑞2= 4𝑝2𝑞2𝛼2 − 8𝑝2𝑞3𝑑𝛼 + 4𝑝2𝑞4𝑑2+ 2𝑝𝑞3𝛼2 − 4𝑝2𝑞2𝛼2 + 2𝑝3𝑞𝛼2− 8𝑝3𝑞2𝑑𝛼 + 8𝑝2𝑞3𝑑𝛼 + 8𝑝3𝑞3𝑑2+ 4𝑝2𝑞2𝛼2 + 8𝑝3𝑞2𝑑𝛼 + 4𝑝4𝑞2𝑑2= 4𝑝2𝑞2𝛼2 + 4𝑝2𝑞4𝑑2+ 2𝑝𝑞3𝛼2 + 2𝑝3𝑞𝛼2+ 8𝑝3𝑞3𝑑2+ 4𝑝4𝑞2𝑑2= 2𝑝𝑞𝛼2 (𝑝2 + 2𝑝𝑞 + 𝑞2)+ (2𝑝𝑞𝑑)2 (𝑝2 + 2𝑝𝑞 + 𝑞2)= 2𝑝𝑞𝛼2 + (2𝑝𝑞𝑑)2= 𝜎2𝐴 + 𝜎2𝐷 (2.22)

From the last two lines of (2.22) it follows that 𝜎2𝐴 = 2𝑝𝑞𝛼2 and 𝜎2𝐷 = (2𝑝𝑞𝑑)2.
It can be shown that 𝜎2𝐴 corresponds to the squared breeding values times the
associated genotype frequencies. Because the expected values of the breeding
values is zero, 𝜎2𝐴 is equivalent to the variance of the breeding values.
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𝜎2𝐴 = 𝑉 𝑎𝑟 [𝐵𝑉 ] = (𝐵𝑉11 − 𝐸 [𝐵𝑉 ])2 ∗ 𝑓(𝐺1𝐺1)+ (𝐵𝑉12 − 𝐸 [𝐵𝑉 ])2 ∗ 𝑓(𝐺1𝐺2)+ (𝐵𝑉22 − 𝐸 [𝐵𝑉 ])2 ∗ 𝑓(𝐺2𝐺2)= 𝐵𝑉 211 ∗ 𝑓(𝐺1𝐺1) + 𝐵𝑉 212 ∗ 𝑓(𝐺1𝐺2) + 𝐵𝑉 222 ∗ 𝑓(𝐺2𝐺2)= (2𝑞𝛼)2 ∗ 𝑝2 + ((𝑞 − 𝑝)𝛼)2 ∗ 2𝑝𝑞 + (−2𝑝𝛼)2 ∗ 𝑞2= 4𝑝2𝑞2𝛼2 + (𝑞2𝛼2 − 2𝑝𝑞𝛼2 + 𝑝2𝛼2) ∗ 2𝑝𝑞 + 4𝑝2𝑞2𝛼2= 8𝑝2𝑞2𝛼2 + 2𝑝𝑞3𝛼2 − 4𝑝2𝑞2𝛼2 + 2𝑝3𝑞𝛼2= 4𝑝2𝑞2𝛼2 + 2𝑝𝑞3𝛼2 + 2𝑝3𝑞𝛼2= 2𝑝𝑞𝛼2 (2𝑝𝑞 + 𝑞2 + 𝑝2)= 2𝑝𝑞𝛼2 (2.23)

In the above derivation in (2.23) of the variance of the breeding values, we were
using the fact that the expected value 𝐸 [𝐵𝑉 ] = 0. This can be shown more
formally as follows

𝐸 [𝐵𝑉 ] = 𝐵𝑉11 ∗ 𝑓(𝐺1𝐺1) + 𝐵𝑉12 ∗ 𝑓(𝐺1𝐺2) + 𝐵𝑉22 ∗ 𝑓(𝐺2𝐺2)= 2𝑞𝛼 ∗ 𝑝2 + (𝑞 − 𝑝)𝛼 ∗ 2𝑝𝑞 + (−2𝑝𝛼) ∗ 𝑞2= 2𝑝2𝑞𝛼 + 2𝑝𝑞2𝛼 − 2𝑝2𝑞𝛼 − 2𝑝𝑞2𝛼= 0 (2.24)

Similarly to (2.23) we can show that 𝜎2𝐷 corresponds to the squared dominance
deviations times the frequencies of the corresponding genotypes. That is the
reason why 𝜎2𝐷 is called dominance variance.

𝜎2𝐷 = 𝐷211 ∗ 𝑓(𝐺1𝐺1) + 𝐷212 ∗ 𝑓(𝐺1𝐺2) + 𝐷222 ∗ 𝑓(𝐺2𝐺2)= (−2𝑞2𝑑)2 ∗ 𝑝2 + (2𝑝𝑞𝑑)2 ∗ 2𝑝𝑞 + (−2𝑝2𝑑)2 ∗ 𝑞2= 4𝑝2𝑞4𝑑2 + 8𝑝3𝑞3𝑑2 + 4𝑝4𝑞2𝑑2= 4𝑝2𝑞2𝑑2 (𝑞2 + 2𝑝𝑞 + 𝑝2)= 4𝑝2𝑞2𝑑2 (2.25)

2.7 Extension To More Loci

When only a single locus is considered, the genotypic values (𝑉𝑖𝑗) can be de-
composed according to equation (2.16) into population mean, breeding value
and dominance deviation. When a genotype refers to more than one locus, the
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genotypic value may contain an additional deviation caused by non-additive
combination effects. The overall set of effects that might arise when considering
mulitple loci is shown in Figure 2.4.

Locus A Locus B

Two Loci Influencing a Quantitative Trait

Figure 2.4: Decomposition of the Influence of two Loci on a Quantitative Trait

2.7.1 Epistatic Interaction

Let 𝑉𝐴 be the genotypic value of locus 𝐴 and 𝑉𝐵 denote the genotypic value of
a second locus 𝐵, then the total genotypic value 𝑉 attributed to both loci 𝐴
and 𝐵 can be written as

𝑉 = 𝑉𝐴 + 𝑉𝐵 + 𝐼𝐴𝐵 (2.26)

where 𝐼𝐴𝐵 is the deviation from additive combination of these genotypic values.
When computing the population mean earlier in this chapter, we assumed that𝐼 was zero for all combinations of genotypes. If 𝐼 is not zero for any combination
of genes at different loci, those genes are said to interact with each other or to
exhibit epistasis. The deviation 𝐼 is called interaction deviation or epistatic
deviation. If 𝐼 is zero, the genes are called to act additively between loci. Hence
additive action may mean different things. When referring to one locus, it
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means absence of dominance. When referring to different loci, it means absence
of epistasis.
Interaction between loci may occur between pairs or between higher numbers of
different loci. The complex nature of higher order interactions, i.e., interactions
between higher number of loci does not need to concern us. Because in the total
genotypic value 𝑉 , interaction deviations of all sorts are treated together in an
overall interaction deviation 𝐼 .
Applying the decomposition of the genotypic values 𝑉𝐴 of locus 𝐴 and 𝑉𝐵 of
locus 𝐵 as shown in (2.16) leads to

𝑉 = 𝑉𝐴 + 𝑉𝐵 + 𝐼𝐴𝐵= 𝜇𝐴 + 𝐵𝑉𝐴 + 𝐷𝐴 + 𝜇𝐵 + 𝐵𝑉𝐵 + 𝐷𝐵 + 𝐼𝐴𝐵 (2.27)

Collecting terms in (2.27) as follows

𝜇 = 𝜇𝐴 + 𝜇𝐵𝑈 = 𝐵𝑉𝐴 + 𝐵𝑉𝐵𝐷 = 𝐷𝐴 + 𝐷𝐵𝐼 = 𝐼𝐴𝐵 (2.28)

The decomposition shown in (2.27) and the collection of variables (see (2.28))
can be generalized to more than two loci. This leads to the following generalized
form of decomposing the overall total genotype 𝑉 for the case of multiple loci
affecting a certain trait of interest.𝑉 = 𝜇 + 𝑈 + 𝐷 + 𝐼 (2.29)

where 𝑈 is the sum of the breeding values attributable to the separate loci
and 𝐷 is the sum of all dominance deviations. For our purposes in livestock
breeding where we want to assess the genetic potential of a selection candidate
to be a parent of offspring forming the next generation, the breeding value
is the most important quantity. The breeding value is of primary importance
because a given parent passes a random sample of its alleles to its offspring. We
have seen in section 2.4.4 that breeding values are additive in the number of
favorable alleles. Hence the more favorable alleles a given parent passes to its
offspring the higher the breeding value of this parent.
On the other hand, the dominance deviation measures the effect of a certain
genotype occurring in an individual and the interaction deviation estimates the
effects of combining different genotypes at different loci in the genome. But
because parents do not pass complete genotypes nor do they pass stretches of
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DNA with several loci, but only a random collection of its alleles, it is really the
breeding value that is of primary importance in assessing the genetic potential
of a given selection candidate.

2.7.2 Interaction Variance

If genotypes at different loci show epistatic interaction effects as described in
section 2.7.1, the interactions give rise to an additional variance component
called 𝑉𝐼 , which is the variance of interaction deviations. This new variance
component 𝑉𝐼 can be further decomposed into sub-components. The first level
of sub-components is according to the number of loci that are considered. Two-
way interactions involve two loci, three-way interactions consider three loci and
in general 𝑛-way interactions arise from 𝑛 different loci. The next level of
subdivision is according to whether they include additive effects, dominance
deviations or both.

In general it can be said that for practical purposes, interaction effects explain
only a very small amount of the overall variation. As already mentioned in
section @ref(#epistatic-interaction) for livestock breeding, we are mostly inter-
ested in the additive effects. This is also true when looking at the variance
components. Hence dominance variance and variances of interaction deviations
are not used very often in practical livestock breeding application.

2.8 Genetic Models

In this chapter, we have seen how to model the genetic basis of a quantitative
trait when a single locus affects the trait of interest. We call this a single-locus
model. When several loci have an effect on a certain trait, then we talk about
a polygenic model. Letting the number of loci affecting a certain phenotype
tend to infinity, the resulting model is called infinitesimal model.

From a statistical point of view, the breeding values in an infinitesimal model
are considered as a random effect with a known distribution. Due to the central
limit theorem, this distribution is assumed to be a normal distribution. The
central limit theorem says that the distribution of any sum of a large number of
very small effects converges to a normal distribution. For our case where a given
trait of interest is thought to be influenced by a large number of genetic loci
each having a small effect, the sum of the breeding values of all loci together can
be approximated by a normal distribution. Figure (2.5) shows the distribution
for a sum of 10, 100 and 1000 components each. The histograms show a better
approximation to the normal distribution the larger the number of components
considered in the sum.
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Figure 2.5: Distribution of Sums of Different Numbers of Components

2.8.1 Model Usage In Routine Evaluations

Traditional prediction of breeding values before the introduction of genomic
selection is based on the infinitesimal model. When genomic selection was in-
troduced which takes into account the information from a large number of loci,
genomic breeding values are estimated using a polygenic model.
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