
Chapter 3

Genetic Evaluations

In chapter 2, we have already seen that the breeding value is a really impor-
tant concept. The Definition of the term breeding value has some important
consequences.

• The breeding value is based on the average of a large number of offspring.
This is necessary, because offspring inherit a random sample of the alleles
of a parent. But not all offspring receive the same sample of alleles. Taking
the average of a large number of offspring reduces the effect of sampling
and thereby lets the breeding value converge to a stable value.

• The breeding value is defined as a deviation from the population mean.
This population mean depends on allele frequencies which are specific for
each population. Therefore breeding values can only be compared within
one population.

• Because the breeding value is defined as a deviation, the expected value of
the breeding values and the mean of all breeding values are 0 by definition.

3.1 Introduction

Because, in the more traditional setting1 of livestock breeding, we do not have
information about allele frequencies and about genotypic values, we have to
predict breeding values. For this prediction we can use different sources of
information. Currently, we are assuming that this information is all based on
records of phenotypic observations.

1That means, at this moment, we are ignoring all recent developments made such as ge-
nomic selection.
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3.1.1 The Basic Model

Although, the phenotypic observation might originate from different sources,
we can use one basic model for all of the breeding value predictions. We have
already seen a different form of this model in equation (1.1) in section 1.3.1.
The original model from equation (1.1) is modified and extended to the model
shown below. 𝑦𝑖𝑗 = 𝜇𝑖 + 𝑔𝑖 + 𝑒𝑖𝑗 (3.1)

where 𝑦𝑖𝑗 𝑗𝑡ℎ record of animal 𝑖𝜇𝑖 identifiable fixed environmental effect𝑔𝑖 sum of all additive (𝑢), dominance (𝑑) and epistatic effects
of the genotype of animal 𝑖𝑒𝑖𝑗 random environmental effect associated to observation 𝑗 of
animal 𝑖

Livestock species are mostly diploid and hence from a given parent only one
allele of a given locus is passed to a gamete which can later be found in the
parents offspring. Any interaction effects caused by dominance or epistasis are
not preserved from parent to offspring. Only the additive effect of a given
allele is passed from parent to offspring. The additive genetic part (𝑢𝑖) of 𝑔𝑖 in
equation (3.1) represents the average genetic effect that animal 𝑖 receives from
its parents. It is therefore called the breeding value. Because the additive
genetic effect is a function of the alleles passed from the parents to the progeny,
it is the only component that can be selected for and is therefore the main
component of interest from a livestock breeding perspective. Due to the major
interest in the genetic additive component, the terms in the basic model in (3.1)
are re-arranged as follows. 𝑦𝑖𝑗 = 𝜇𝑖 + 𝑢𝑖 + 𝑒∗𝑖𝑗 (3.2)

where 𝑦𝑖𝑗 𝑗𝑡ℎ record of animal 𝑖𝜇𝑖 identifiable fixed environmental effect𝑢𝑖 sum of all additive (𝑢) genetic effects of the genotype of
animal 𝑖𝑒∗𝑖𝑗 dominance, epistatic and random environmental effects of
the 𝑗𝑡ℎ record of animal 𝑖

The same re-arrangement of terms in the basic model is illustrated by Figure
3.1
Equation (3.2) constitutes the linear model that forms the basis for most prob-
lems of breeding value prediction in livestock breeding. Usually it is assumed
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Figure 3.1: Re-arrangment of Terms Representing Genetic Effects

that the phenotypic observations 𝑦𝑖𝑗 follow a multivariate normal distribution.
We have already seen in section 2.8 that the additive genetic effect (𝑢𝑖) is
thought to be the sum of a large number of unlinked loci that all contribute a
very small amount to the total breeding value. Then by the central limit theo-
rem it follows that 𝑢𝑖 converges to a normal distribution. By the same reasoning
that the environmental effect 𝑒∗𝑖𝑗 is composed of very many small contributions,
also 𝑒∗𝑖𝑗 converges to a normal distribution. From distribution theory it is known
that the sum of two normally distributed random variables (like 𝑢𝑖 and 𝑒∗𝑖𝑗) plus
a fixed term (like 𝜇) is again a random variable that follows a normal distribu-
tion. We can conclude that the assumption that all the random effects (𝑦𝑖𝑗, 𝑢𝑖
and 𝑒∗𝑖𝑗) in model (3.2) is consistent with distribution theory. Furthermore the
central limit theorem implies that in principle the number of breeding values
from single loci tends to infinity. That means the total breeding value 𝑢𝑖 cor-
responds to a sum of infinitely many contributions. Based on the fact that in
theory 𝑢𝑖 is composed of an infinite number of infinitely small components, the
model in (3.2) is called the infinitesimal model.

Concerning the variances, it is assumed that 𝑣𝑎𝑟(𝑦𝑖𝑗), 𝑣𝑎𝑟(𝑢𝑖) and 𝑣𝑎𝑟(𝑒𝑖𝑗) are
all known. Covariances (𝑐𝑜𝑣(𝑢𝑖, 𝑒𝑖𝑗)) between genetic and environmental effects
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and covariances (𝑐𝑜𝑣(𝑒∗𝑖𝑗, 𝑒∗𝑘𝑙)) between environmental effects of mates 𝑖 and 𝑘
are assumed to be zero, respectively.
Also 𝜇𝑖 which is used to represent the mean performance of animals in the same
identifiable environment such as herd or management group or have the same
sex or age, is assumed to be known.

3.1.2 Decomposition of Breeding Value

As already mentioned earlier, the breeding value 𝑢𝑖 of an individual 𝑖 represents
the average additive genetic effect that animal 𝑖 receives from its parents 𝑠 and𝑑. Hence 𝑢𝑖 can be decomposed into

𝑢𝑖 = 12𝑢𝑠 + 12𝑢𝑑 + 𝑚𝑖 (3.3)

where 𝑢𝑠 and 𝑢𝑑 correspond to the breeding values of parents 𝑠 and 𝑑, respec-
tively and 𝑚𝑖 is the deviation of 𝑢𝑖 from the average breeding values of the
parents and is called Mendelian sampling. The term 𝑚𝑖 is necessary, be-
cause two fullsibs 𝑖 and 𝑘 both having parents 𝑠 and 𝑑 receive different random
samples of the set of parental alleles. Hence the breeding values 𝑢𝑖 and 𝑢𝑘 of
fullsibs 𝑖 and 𝑘 are not going to be the same. The difference between breeding
values 𝑢𝑖 and 𝑢𝑘 is reflected in the different Mendelian sampling terms 𝑚𝑖 and𝑚𝑘 for fullsibs 𝑖 and 𝑘.

3.2 Basic Principle of Predicting Breeding Val-
ues

The prediction of breeding values mostly follows the same principles. From the
point of view of statistics, estimations or predictions are always a function of
the observed data. When looking at the model in (3.2), we can probably guess
that the observed phenotypic records (𝑦𝑖𝑗) must be corrected somehow for the
identifiable environmental effects represented by 𝜇𝑖. The second influence that
we want to consider when predicting breeding values is how “closely related” the
observed record 𝑦𝑖𝑗 is to the breeding value. For traits where the influence of the
genetic component is not very strong, it is probably a good idea to down-weigh
the information from 𝑦𝑖𝑗.
The two principles just described can be generalized as follows. Breeding values
are predicted according to the following two steps.

1. Observations are corrected for the mean performance values of animals
under the same environmental conditions. The conditions are described
by the effects captured in 𝜇𝑖.
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2. The corrected observations are weighted by a factor that reflects the
amount of information that is available for the prediction of an animals
breeding value.

In what follows, we have a look at how breeding values are predicted from
different sources of information.

3.3 Animal’s Own Performance

3.3.1 Single Record

When one phenotypic observation per animal is the only information we have
available, the predictor ̂𝑢𝑖 of the breeding value 𝑢𝑖 of animal 𝑖 can be derived
according to the following line of argument. Let us assume for a moment that
we know the true breeding value 𝑢𝑖 for a population of animals. In addition to
that each animal 𝑖 has one observation 𝑦𝑖 available. Then we plot the values of𝑢𝑖 against the values of 𝑦𝑖 for the complete population.

ui

ui
u

Figure 3.2: Regression of Breeding Values onto Phenotypic Observations
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The plot in Figure 3.2 suggests that we fit a regression of the breeding values
onto the phenotypic records. The fitted regression is represented by the red
line. Hence as soon as we can draw the regression line, we can predict breeding
values based on the phenotypic observations. The predicted breeding value ̂𝑢𝑖
for a given 𝑦𝑖 corresponds to the value on the red line corresponding to the value
of 𝑦𝑖. The slope of the regression line corresponds to the regression coefficient𝑏. From regression theory, the coefficient 𝑏 is computed as

𝑏 = 𝑐𝑜𝑣(𝑢, 𝑦)𝑣𝑎𝑟(𝑦)= 𝑐𝑜𝑣(𝑢, 𝜇 + 𝑢 + 𝑒)𝑣𝑎𝑟(𝑦)= 𝑐𝑜𝑣(𝑢, 𝑢)𝑣𝑎𝑟(𝑦)= 𝑣𝑎𝑟(𝑢)𝑣𝑎𝑟(𝑦)= ℎ2 (3.4)

where ℎ2 corresponds to the ratio between the genetic additive and the pheno-
typic variance and is called heritability. We are using the regression coefficient
to predict the breeding value for animal 𝑖 based on a single record 𝑦𝑖.

̂𝑢𝑖 = 𝑏 ∗ (𝑦𝑖 − 𝜇)= ℎ2 ∗ (𝑦𝑖 − 𝜇) (3.5)

From that it follows that the predicted breeding value for an animal based on
a single own performance record corresponds to the observation corrected for
the general mean 𝜇 times the heritability. The correlation between the selec-
tion criterion, in our case the phenotypic record and the true breeding value is
known as the accuracy of the prediction. It provides a means of evaluating the
different selection criteria. The higher the correlation between selection crite-
rion and breeding value, the better is the prediction. Sometimes the accuracy
of evaluation is reported in terms of reliability (𝑟2) which corresponds to the
squared correlation between selection criterion and true breeding value. With
a single own performance record per animal, the correlation is
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𝑟𝑢,𝑦 = 𝑐𝑜𝑣(𝑢, 𝑦)𝜎𝑢 𝜎𝑦= 𝜎2𝑢𝜎𝑢 𝜎𝑦= 𝜎𝑢𝜎𝑦= ℎ (3.6)

An alternative way to assess the quality of the breeding value prediction is to
compute the variance of the predicted breeding values.

𝑣𝑎𝑟( ̂𝑢𝑖) = 𝑣𝑎𝑟(𝑏𝑦) = 𝑣𝑎𝑟(ℎ2𝑦)= ℎ4𝑣𝑎𝑟(𝑦)= 𝑟2𝑢,𝑦ℎ2𝜎2𝑦= 𝑟2𝑢,𝑦𝜎2𝑎 (3.7)

Hence the variance of the predicted breeding values corresponds to the product
of the reliability times the genetic additive variance. The expected response (𝑅)
to selection on the basis of one record per animal is

𝑅 = 𝑖 ∗ 𝑟2𝑢,𝑦 ∗ 𝜎𝑦 = 𝑖 ∗ ℎ2 ∗ 𝜎𝑦 (3.8)

where 𝑖, the selection intensity refers to the superiority of selected individuals
above population mean expressed in phenotypic standard deviation.

3.3.2 Repeated Records

When animals get older, it is likely that we can observe multiple measurements
for the same trait. An example is milk yield in dairy cows where a cow might
have repeated lactation records. The breeding value of an animal may be pre-
dicted based on the mean of the repeated records. With repeated records, an
additional resemblance between the records of an animal due to permanent en-
vironmental factors occurs. The between-animal variance is partly genetic and
partly caused by permanent environmental effects. The within-animal variance
is attributed to differences between the successive measurements of the animal
arising from temporary environmental variations, i.e., from environmental fac-
tors that change over time. The variance of observations (𝑣𝑎𝑟(𝑦)) can therefore
be partitioned as
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𝑣𝑎𝑟(𝑦) = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑝𝑒) + 𝑣𝑎𝑟(𝑡𝑒) (3.9)

where 𝑣𝑎𝑟(𝑢) is the genetic additive variance, 𝑣𝑎𝑟(𝑝𝑒) the variance due to per-
manent environmental effects and 𝑣𝑎𝑟(𝑡𝑒) the variance due to temporary envi-
ronmental effects.
The intra-class correlation 𝑡 is defined as the ratio of the genetic plus the per-
manent environmental variance divided by the phenotypic variance.

𝑡 = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑝𝑒)𝑣𝑎𝑟(𝑦) (3.10)

The term 𝑡 is also called repeatability and it measures the correlation between
the records of an individual. From (3.10) it follows that

1 − 𝑡 = 𝑣𝑎𝑟(𝑡𝑒)𝑣𝑎𝑟(𝑦) (3.11)

With this model, it is assumed that the repeated records on the animal are the
same trait. Therefore the genetic correlation between all pairs of records is one.
We also assume that all records have equal variance and that the environmental
correlations between all pairs of records are equal. Let ̃𝑦 represent the mean of𝑛 records on animal 𝑖 which means

̃𝑦𝑖 = 1𝑛 𝑛∑𝑘=1 𝑦𝑖𝑘= 1𝑛 𝑛∑𝑘=1(𝜇 + 𝑢𝑖 + 𝑝𝑒𝑖 + 𝑡𝑒𝑖𝑘)
= 𝜇 + 𝑢𝑖 + 𝑝𝑒𝑖 + 1𝑛 𝑛∑𝑘=1 𝑡𝑒𝑖𝑘 (3.12)

In this case, we use the mean ( ̃𝑦𝑖) to predict the breeding value ( ̂𝑢𝑖)̂𝑢𝑖 = 𝑏( ̃𝑦𝑖 − 𝜇) (3.13)

where

𝑏 = 𝑐𝑜𝑣(𝑢, ̃𝑦)𝑣𝑎𝑟( ̃𝑦) (3.14)

The single elements are computed as
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𝑐𝑜𝑣(𝑢, ̃𝑦) = 𝑐𝑜𝑣(𝑢, 𝜇 + 𝑢 + 𝑝𝑒 + 1𝑛 𝑛∑𝑘=1 𝑡𝑒𝑘) = 𝑣𝑎𝑟(𝑢) = 𝜎2𝑢 (3.15)

and

𝑣𝑎𝑟( ̃𝑦) = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑝𝑒) + 1𝑛𝑣𝑎𝑟(𝑡𝑒) (3.16)

Expressing (3.16) in terms of (3.10) and (3.11) leads to

𝑣𝑎𝑟( ̃𝑦) = 𝑡 ∗ 𝜎2𝑦 + 1𝑛(1 − 𝑡) ∗ 𝜎2𝑦= 1𝑛 (𝑛 ∗ 𝑡 + (1 − 𝑡)) 𝜎2𝑦= 1 + (𝑛 − 1)𝑡𝑛 𝜎2𝑦 (3.17)

Inserting this into (3.14) results in

𝑏 = 𝑐𝑜𝑣(𝑢, ̃𝑦)𝑣𝑎𝑟( ̃𝑦)= 𝑛𝜎2𝑢(1 + (𝑛 − 1)𝑡)𝜎2𝑦= 𝑛ℎ21 + (𝑛 − 1)𝑡 (3.18)

When we predict the breeding value 𝑢𝑖 of animal 𝑖 using repeated records, the
regression coefficient 𝑏 depends on

1. the heritability (ℎ2)
2. the repeatability (𝑡) and
3. the number (𝑛) of repeated records per animal

The difference between repeated records of an animal is assumed to be due to
temporary environmental differences between successive performances. How-
ever, if successive records are known to be affected by factors which influence
performance, these must be corrected for. For instance, differences in age at
calving in first and second lactations may influence milk yield in first and sec-
ond lactation. Such age differences should be adjusted for before using the
means of both lactations for breeding value prediction.
The accuracies of the predicted breeding value using repeated records is
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𝑟𝑢, ̃𝑦 = 𝑐𝑜𝑣(𝑢, ̃𝑦)𝜎𝑢𝜎𝑦= 𝜎2𝑢𝜎𝑢√(1 + (𝑛 − 1)𝑡)/𝑛𝜎2𝑦= ℎ√𝑛/(1 + (𝑛 − 1)𝑡)= √𝑛ℎ2/(1 + (𝑛 − 1)𝑡)= √𝑏 (3.19)

The expected response to selection using repeated records will be covered in an
exercise.

3.4 Progeny Records

For traits that are recorded only on female animals, the prediction of breeding
values for male animals (sires) is usually based on the mean of their female
progeny. This is typical in dairy cattle, where bulls are evaluated on the basis
of their daughters. Let ̄𝑦𝑖 be the mean of single records of 𝑛 daughters of
sire 𝑖 with the assumption that the daughters are only related through the sire
(paternal half-sibs), the predicted breeding value of sire i can then be computed
as

̂𝑢𝑖 = 𝑏 ∗ ( ̄𝑦𝑖 − 𝜇) (3.20)

where

𝑏 = 𝑐𝑜𝑣(𝑢, ̄𝑦)𝑣𝑎𝑟( ̄𝑦) (3.21)

and
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̄𝑦 = 1𝑛 𝑛∑𝑘=1 𝑦𝑘= 1𝑛 𝑛∑𝑘=1(𝜇 + 𝑢𝑘 + 𝑒𝑘)
= 𝜇 + 1𝑛 𝑛∑𝑘=1(𝑢𝑘 + 𝑒𝑘)
= 𝜇 + 1𝑛 𝑛∑𝑘=1(1/2𝑢𝑠 + 1/2𝑢𝑑𝑘 + 𝑚𝑘 + 𝑒𝑘)
= 𝜇 + 1/2𝑢𝑠 + 1𝑛 𝑛∑𝑘=1(1/2𝑢𝑑𝑘 + 𝑚𝑘 + 𝑒𝑘)
= 𝜇 + 1/2𝑢𝑠 + 1𝑛 𝑛∑𝑘=1 1/2𝑢𝑑𝑘 + 1𝑛 𝑛∑𝑘=1 𝑒𝑘 (3.22)

In the current case of using progeny records to predict a breeding value, we have

𝑐𝑜𝑣(𝑢, ̄𝑦) = 𝑐𝑜𝑣(𝑢, 12𝑢𝑠 + 12 1𝑛 𝑛∑𝑘=1 𝑢𝑑,𝑘 + 1𝑛 𝑛∑𝑘=1 𝑚𝑘 + 1𝑛 𝑛∑𝑘=1 𝑒𝑘)= 𝑐𝑜𝑣(𝑢, 12𝑢𝑠)= 12𝑐𝑜𝑣(𝑢, 𝑢𝑠)= 12𝜎2𝑢 (3.23)

where 𝑢𝑠 and 𝑢𝑑,𝑘 denote the breeding values of sire 𝑠 and dam 𝑑 of offspring𝑘, respectively and 𝑚𝑘 and 𝑒𝑘 stand for the mendelian sampling and the envi-
ronmental effect of daughter 𝑘. Using the same principles as in section 3.3.2,
we get

𝑣𝑎𝑟( ̄𝑦) = (𝑡 + (1 − 𝑡)/𝑛)𝜎2𝑦 (3.24)

where 𝜎2𝑦 = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑒) = 𝜎2𝑢 + 𝜎2𝑒 .

Assuming there is no environmental covariance between half-sib records and the
intra-class correlation 𝑡 is 1/4𝜎2𝑢𝜎2𝑦 . Then we can compute the regression coefficient
as
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𝑏 = 1/2𝜎2𝑢(𝑡 + (1 − 𝑡)/𝑛)𝜎2𝑦= 1/2ℎ2𝜎2𝑦( 14 ℎ2 + (1 − 14 ℎ2)/𝑛)𝜎2𝑦= 2𝑛ℎ2𝑛ℎ2 + (4 − ℎ2)= 2𝑛𝑛 + (4 − ℎ2)/ℎ2= 2𝑛𝑛 + 𝑘 (3.25)

with 𝑘 = 4−ℎ2ℎ2 .
The term 𝑘 is constant for any assumed heritability (ℎ2). The regression co-
efficient (𝑏) depends on the heritability and number of progeny and converges
towards a limit of 2 as the number of daughters increases.
The accuracy of the estimated breeding value is

𝑟𝑢, ̄𝑦 = 𝑐𝑜𝑣(𝑢, ̄𝑦)√𝑣𝑎𝑟(𝑢)𝑣𝑎𝑟( ̄𝑦)= 1/2ℎ2𝜎2𝑦√ℎ2𝜎2𝑦( 14 ℎ2 + (1 − 14 ℎ2)/𝑛)𝜎2𝑦= 1/2ℎ√ 14 ℎ2 + (1 − 14 ℎ2)/𝑛= √ 𝑛ℎ2𝑛ℎ2 + (4 − ℎ2)= √ 𝑛𝑛 + 𝑘 (3.26)

The term for 𝑟𝑢, ̄𝑦 in (3.26) approaches 1 as the number of progeny increases,
assuming 𝑘 is constant. The reliability (𝑟2𝑢, ̄𝑦) of the predicted breeding value is𝑛/(𝑛 + 𝑘) and corresponds to 1/2 ∗ 𝑏 computed in (3.25).
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3.5 Appendix: Parent-Offspring Breeding Val-
ues

In section 3.1.2 the decomposition of the breeding value 𝑢𝑖 for animal 𝑖 into half
of the breeding values of parents 𝑠 and 𝑑 plus the mendelian sampling effect𝑚𝑖 is shown. The mendelian sampling effect 𝑚𝑖 models the deviation of the
offspring breeding value 𝑢𝑖 from the parent average. Because 𝑚𝑖 is modelled
as a deviation, we can also state that over a large number (𝑁) of offspring of
parents 𝑠 and 𝑑 the average over all mendelian sampling effects is 0. This can
be expressed with the following formula1𝑁 𝑁∑𝑖=1 𝑚𝑖 = 0 (3.27)

where 𝑚𝑖 are mendelian sampling effects of 𝑁 offspring from the same parents𝑠 and 𝑑.

3.5.1 Single Locus Model

Let us return for a moment to the single locus model and try to illustrate
whether the proposition in equation (3.27) is true. This requires to distinguish
between different cases according to the genotypes of parents 𝑠 and 𝑑 at the
locus 𝐺 of interest.

3.5.1.1 Case 1: Homozygous Parents With Same Genotype

If both parents 𝑠 and 𝑑 are homozygous and have the same genotype either both𝐺1𝐺1 or both 𝐺2𝐺2, each offspring has the same genotype as the parents. If
parents and offspring have the same genotypes, then they have also the same
breeding values and hence every 𝑚𝑖 term is 0 and with that equation (3.27) is
satisfied.

3.5.1.2 Case 2: Homozygous Parents With Different Genotypes

In this case one of the parents - let us say 𝑠 has genotype 𝐺1𝐺1 with breeding
value 𝑢𝑠 = 2𝑞𝛼 and the other parent 𝑑 has genotype 𝐺2𝐺2 with breeding value𝑢𝑑 = −2𝑝𝛼. All offspring form such a mating are heterozygous with breeding
value (𝑞 − 𝑝)𝛼. Inserting this into the decomposition gives

𝑢𝑖 = 12(𝑢𝑠 + 𝑢𝑑) + 𝑚𝑖
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Therefore

𝑚𝑖 = 𝑢𝑖 − 12(𝑢𝑠 + 𝑢𝑑) = (𝑞 − 𝑝)𝛼 − 12(2𝑞𝛼 − 2𝑝𝛼) = 0
This shows that also in this case every individual 𝑚𝑖 term is 0 and hence the
average 𝑚𝑖 effect over a large number of offspring from the same parents is also0.

3.5.1.3 Case 3: One Parent Homozygous, the Other Parent Het-
erozygous

One parent is homozygous either 𝐺1𝐺1 or 𝐺2𝐺2 and the other parent is het-
erozygous 𝐺1𝐺2. Let us assume that parent 𝑠 has genotype 𝐺1𝐺1 with breeding
value 𝑢𝑠 = 2𝑞𝛼 and parent 𝑑 is heterozygous with breeding value 𝑢𝑑 = (𝑞 − 𝑝)𝛼.
The parent average breeding value is.12(𝑢𝑠 + 𝑢𝑑) = 12(2𝑞𝛼 + (𝑞 − 𝑝)𝛼) = 32𝑞𝛼 − 12𝑝𝛼
Parents 𝑠 and 𝑑 can have either an offspring 𝑖 with genotype 𝐺1𝐺1 or an offspring𝑗 with genotype 𝐺1𝐺2. Both types of offspring can be observed with probability1/2. Using the above parent average, 𝑚𝑖 and 𝑚𝑗 can be computed as

𝑚𝑖 = 𝑢𝑖 − 12(𝑢𝑠 + 𝑢𝑑) = 2𝑞𝛼 − 32𝑞𝛼 + 12𝑝𝛼 = 12𝛼
Similarly

𝑚𝑗 = 𝑢𝑗 − 12(𝑢𝑠 + 𝑢𝑑) = (𝑞 − 𝑝)𝛼 − 32𝑞𝛼 + 12𝑝𝛼 = −12𝛼
Taking the average over a large number of offspring where 𝑚𝑖 and 𝑚𝑗 can be
observed with probability 1/2 leads to

1𝑁 𝑁∑𝑘=1 𝑚𝑘 = 12(12𝛼 − 12𝛼) = 0
The case where parent 𝑠 has genotype 𝐺2𝐺2 and parent 𝑑 has genotype 𝐺1𝐺2
is left to the reader as an exercise.
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3.5.1.4 Case 4: Heterozygous Parents

Heterozygous parents have heterozygous offspring with probability 1/2 and they
have homozygous 𝐺1𝐺1 offspring and homozygous 𝐺2𝐺2 offspring both with
probability 1/4. The parent average breeding value for heterozygous parents is12(𝑢𝑠 + 𝑢𝑑) = (𝑞 − 𝑝)𝛼
For all heterozygous offspring of parents 𝑠 and 𝑑, each individual 𝑚𝑖 term is equal
to 0. Based on the concept of allele substitution, we know that the difference
between the breeding value of the 𝐺1𝐺1 offspring and the parent average is 𝛼.
Furthermore the difference between the breeding value of the 𝐺2𝐺2 offspring
and the parent average is −𝛼. Because the homozygous offspring occur with
the same probability, the average mendelian sampling effect for a large number
of offspring for heterozygous parents is 0. The detailed computations are left to
the reader as an exercise.
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