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4.6 Appendix: Derivation of BLUP

Consider the mixed linear model𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒
with 𝐸(𝑦) = 𝑋𝑏, 𝐸(𝑢) = 0 and 𝐸(𝑒) = 0, 𝑣𝑎𝑟(𝑢) = 𝑈 and 𝑣𝑎𝑟(𝑒) = 𝑅, hence𝑣𝑎𝑟(𝑦) = 𝑉 = 𝑍𝑈𝑍𝑇 + 𝑅
4.6.1 Predictions

Breeding values 𝑢 are to be predicted by a statistic which is a function of the
data 𝑦. At this point, we are restricting ourselves on linear functions of the
data. The predictions are called 𝑢̂
Suppose, we want to predict breeding values 𝑢 with a linear function of the data𝑦 corrected for some vector 𝑘. As a formula this can be written as𝑢̂ = 𝑀 ⋅ (𝑦 − 𝑘)
where 𝑀 is an unknown matrix and 𝑘 an unknown vector of corrections. The
unknowns 𝑀 and 𝑘 are determined using the properties of BLUP.

4.6.2 Unbiasedness

The BLUP 𝑢̂ has the property of unbiasedness. This means𝐸[𝑢̂] = 𝐸[𝑢]
According to the previously made definition of breeding value, we set 𝐸[𝑢] = 0.
Inserting the above definition of 𝑢̂ and taking expectations, leads to𝐸[𝑢̂] = 𝐸[𝑀 ⋅ (𝑦 − 𝑘)] = 𝑀 ⋅ (𝐸[𝑦] − 𝐸[𝑘])
Due to the unbiasedness property, we want 𝐸[𝑢̂] = 0. This leads to 𝐸[𝑦] = 𝐸[𝑘].
Because, 𝑘 is expected to be a constant vector of corrections, we can set𝑘 = 𝐸[𝑦]
In the definition of the linear mixed effects model, we saw that 𝐸[𝑦] = 𝑋𝛽. The
BLUP 𝑢̂ of our breeding values has now the form𝑢̂ = 𝑀 ⋅ (𝑦 − 𝐸[𝑦])
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4.6.3 Minimal Prediction Error Variance (Best)

The third condition that is satisfied by the BLUP 𝑢̂ is that of minimal prediction
error variance. More formally that means𝑣𝑎𝑟(𝑢 − 𝑢̂) → Minimum

For reasons of simplicity, we are looking at the case of just one breeding value𝑢𝑖 and one observation 𝑦𝑖 for animal 𝑖. This reduces 𝑀 to a scalar factor which
is to be determined such that the prediction error variance (PEV) is minimal.

𝑃𝐸𝑉 = 𝑣𝑎𝑟(𝑢𝑖 − 𝑢̂𝑖) = 𝑣𝑎𝑟(𝑢𝑖) + 𝑣𝑎𝑟(𝑢̂𝑖) − 2 ∗ 𝑐𝑜𝑣(𝑢𝑖, 𝑢̂𝑖)= 𝑣𝑎𝑟(𝑢𝑖) + 𝑣𝑎𝑟(𝑀(𝑦𝑖 − 𝐸[𝑦𝑖])) − 2 ∗ 𝑐𝑜𝑣(𝑢𝑖, (𝑀(𝑦𝑖 − 𝐸[𝑦𝑖])))= 𝑣𝑎𝑟(𝑢𝑖) + 𝑀2 ∗ 𝑣𝑎𝑟(𝑦𝑖 − 𝐸[𝑦𝑖]) − 2 ∗ 𝑀 ∗ 𝑐𝑜𝑣(𝑢𝑖, (𝑦𝑖 − 𝐸[𝑦𝑖]))= 𝑣𝑎𝑟(𝑢𝑖) + 𝑀2 ∗ 𝑣𝑎𝑟(𝑦𝑖) − 2 ∗ 𝑀 ∗ 𝑐𝑜𝑣(𝑢𝑖, 𝑦𝑖)
The factor 𝑀 is found by taking the first derivative of PEV with respect to 𝑀 .

𝜕𝑃𝐸𝑉𝜕𝑀 = 2 ∗ 𝑀 ∗ 𝑣𝑎𝑟(𝑦𝑖) − 2 ∗ 𝑐𝑜𝑣(𝑢𝑖, 𝑦𝑖)
The value 𝑀 for which PEV is minimal is found by setting 𝜕𝑃𝐸𝑉 /𝜕𝑀 to 0.

0 = 2 ∗ 𝑀 ∗ 𝑣𝑎𝑟(𝑦𝑖) − 2 ∗ 𝑐𝑜𝑣(𝑢𝑖, 𝑦𝑖)𝑀 = 𝑐𝑜𝑣(𝑢𝑖, 𝑦𝑖) ∗ (𝑣𝑎𝑟(𝑦𝑖))−1
This result can be generalized by going back to the original vector valued vari-
ables and the mixed model 𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒.
Hence

• 𝑦 is a vector of length 𝑛 with phenotypic observations
• 𝑢 is a vector of length 𝑞 with breeding values

Expected values and variance-covariance matrices for the two vectors 𝑦 and 𝑢
are given by
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• 𝐸[𝑦] = 𝑋𝛽
• 𝐸[𝑢] = 0
• var(y) = V
• var(u) = U
• cov(u, y^T) = UZ^T

The matrix 𝑀 can be written as𝑀 = 𝑈𝑍𝑇 𝑉 −1
Inserting the value for matrix 𝑀 to the BLUP 𝑢̂ and using 𝐸[𝑦] = 𝑋𝛽 yields𝑢̂ = 𝑈𝑍𝑇 𝑉 −1(𝑦 − 𝑋𝛽)
The vector 𝛽 of fixed effects and regression coefficients is not known. But
because 𝑋 ̂𝛽 with ̂𝛽 being the general least squares solution for 𝛽, the above
used unbiasedness property does also hold for 𝑋 ̂𝛽. Therefore we can write the
BLUP 𝑢̂ as 𝑢̂ = 𝑈𝑍𝑇 𝑉 −1(𝑦 − 𝑋 ̂𝛽)
with ̂𝛽 = (𝑋𝑇 𝑉 −1𝑋)−𝑋𝑇 𝑉 −1𝑦
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