
Chapter 5

Genetic Covariances
Between Animals

The prediction of breeding values using BLUP as shown in chapter 4 uses linear
mixed effects models where the breeding value of each animal is included as
a random effect. Linear mixed effect models in general and specifically Hen-
derson’s mixed model equations require us to be able to specify the variance-
covariance matrix of all random effects. When using the animal model, the
breeding value of each animal is included as a random effect in the linear mixed
effects model. As a consequence of that we need to determine the covariance
between the true breeding values of all animals. Figure 5.1 tries to display the
structure of the required variance-covariance diagrammatically.

The variance-covariance matrix shown at the bottom of Figure 5.1 has the vari-
ances of the true breeding values on the diagonal and all the covariances be-
tween the true breeding values of all animals as offdiagonal elements. From the
formulation of the linear mixed effect model in (4.5), we defined the variance-
covariance matrix of the random effects 𝑢 to be 𝐺 (see equation (4.7)). When
predicting breeding values with the animal model, the variance-covariance ma-
trix of all components in the vector 𝑢 is defined as𝑣𝑎𝑟(𝑢) = 𝐺 = 𝐴 ∗ 𝜎2𝑢 (5.1)

where the matrix 𝐴 is called numerator relationship matrix.

5.1 Similarity Between Individuals

At the genetic level there are two different kinds of similarity
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Figure 5.1: Genetic Covariance Between Animals

1. Identity by descent (IBD)
2. Identity by state

Figure 5.2 illustrates the difference between the two type of identities. The
type of graph shown in Figure 5.2 is called a pedigree which is commonly
used to display the relationship between animals in a population. The rectangle
symbols denote male animals and the round symbols stand for female animals.
The horizontal connections between female and male animals denote a mating.
All animals connected to a vertical line and follow below are progeny of the
connected parents.

The notations inside of the symbols stand for the different genotypes of the
animals on a given locus. The red arrows denote the path of two 𝐴1-alleles which
are copies of the same ancestral allele. These two copies are called identical by
descent (IBD). The green arrows show the path of two alleles which are identical
by state which do not originate from the same copy of any given ancestral alleles.
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Figure 5.2: Identity by State Versus Identity by Descent

5.2 Numerator Relationship Matrix

The probability of identical genes by descent (IBD) occurring in two individuals
is termed the co-ancestry or the coefficient of kinship [[Falconer and Mackay,
1996]]. The additive genetic relationship between two individuals is twice their
co-ancestry. The matrix that expresses the additive genetic relationship among
animals in a population is called the numerator relationship matrix 𝐴. The
matrix 𝐴 is symmetric and its diagonal elements (𝐴)𝑖𝑖 are equal to 1+𝐹𝑖 where𝐹𝑖 is the coefficient of inbreeding of animal 𝑖. The coefficient of inbreeding𝐹𝑖 indicates whether an animal 𝑖 is inbred or not. 𝐹𝑖 is defined to be half
the additive genetic relationship between the parents of 𝑖. Hence the diagonal
element (𝐴)𝑖𝑖 of matrix 𝐴 corresponds to twice the probability that two gametes
taken at random from an animal 𝑖 will carry IBD-alleles.
The off-diagonal elements (𝐴)𝑖𝑗 equals the numerator of the coefficient of re-
lationship between animals 𝑖 and 𝑗. Multiplying the matrix 𝐴 by the additive
genetic variance 𝜎2𝑢 leads to the covariance among breeding values. Thus if 𝑢𝑖
is the breeding value of animal 𝑖 then
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𝑣𝑎𝑟(𝑢𝑖) = (𝐴)𝑖𝑖𝜎2𝑢 = (1 + 𝐹𝑖)𝜎2𝑢 (5.2)

5.2.1 Algorithm To Compute 𝐴
The matrix 𝐴 can be computed using either the

1. path coefficient method or
2. recursive method.

The second method is especially suitable for an implementation by a software
program. In what follows the recursive method to compute the components of𝐴 is described now. Initially, animals in a pedigree are numbered from 1 to 𝑛
and ordered such that parents precede their progeny. The following rules are
then used to compute the components of 𝐴.

• If both parents 𝑠 and 𝑑 of animal 𝑖 are known then
– the diagonal element (𝐴)𝑖𝑖 corresponds to: (𝐴)𝑖𝑖 = 1+𝐹𝑖 = 1+ 12 (𝐴)𝑠𝑑

and
– the off-diagonal element (𝐴)𝑗𝑖 is computed as: (𝐴)𝑗𝑖 = 12 ((𝐴)𝑗𝑠 +(𝐴)𝑗𝑑)
– because 𝐴 is symmetric (𝐴)𝑗𝑖 = (𝐴)𝑖𝑗

• If only one parent 𝑠 is known and assumed unrelated to the mate
– (𝐴)𝑖𝑖 = 1
– (𝐴)𝑖𝑗 = (𝐴)𝑗𝑖 = 12 ((𝐴)𝑗𝑠

• If both parents are unknown
– (𝐴)𝑖𝑖 = 1
– (𝐴)𝑖𝑗 = (𝐴)𝑗𝑖 = 0

5.2.2 Numeric Example

We are given the following pedigree and we want to compute the matrix 𝐴 using
the recursive method described in 5.2.1.

Table 5.1: Example Pedigree To Compute Additive Genetic Rela-
tionship Matrix

Calf Sire Dam
3 1 2
4 1 NA
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5 4 3
6 5 2

The first step of the computations of 𝐴 are the numbering and the ordering of
all the animals. This is already done in the pedigree shown in Table 5.1. The
components of 𝐴 are computed row-by-row starting with (𝐴)11.

(𝐴)11 = 1 + 𝐹1 = 1 + 0 = 1(𝐴)12 = 0 = (𝐴)21(𝐴)13 = 12((𝐴)11 + (𝐴)12) = 0.5 = (𝐴)31(𝐴)14 = 12(𝐴)11 = 0.5 = (𝐴)14(𝐴)15 = 12(𝐴)14 + (𝐴)13) = 0.5 = (𝐴)51(𝐴)16 = 12(𝐴)15 + (𝐴)12) = 0.25
The same computations are also done for all the other components of the matrix𝐴. The final result for the matrix looks as follows

𝐴 = ⎡⎢⎢⎢⎢⎣
1 0 0.5 0.5 0.5 0.250 1 0.5 0 0.25 0.6250.5 0.5 1 0.25 0.625 0.56250.5 0 0.25 1 0.625 0.31250.5 0.25 0.625 0.625 1.125 0.68750.25 0.625 0.5625 0.3125 0.6875 1.125

⎤⎥⎥⎥⎥⎦
As a result, we can see from the components of the above shown matrix 𝐴 that
animals 1 and 2 are not related to each other. Furthermore from the diagonal
elements of 𝐴, it follows that animals 5 and 6 are inbred while animals 1 to 4
are not inbred.

5.3 The Inverse Numerator Relationship Matrix

The general form of Henderson’s mixed model equations as shown in (4.10)
depend on four matrices

1. Design matrix 𝑋 for the fixed effects
2. Design matrix 𝑍 for the random effects
3. The inverse variance-covariance matrix 𝑅−1 for the residuals 𝑒 and
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4. The inverse variance-covariance matrix 𝐺−1 for the random breeding val-
ues 𝑎.

When using the animal model as described in section @ref(#animalmodel),
we have seen in (5.1) that 𝐺 corresponds to the product of the numerator
relationship matrix 𝐴 and the genetic additive variance 𝜎2𝑢. But the mixed
model equations depend on the inverse 𝐺−1 of 𝐺 which means

𝐺−1 = (𝐴 ∗ 𝜎2𝑢)−1 = 𝐴−1 ∗ 1𝜎2𝑢 (5.3)

From (5.3) we can see that in order to be able to set up the mixed model equa-
tions for an animal model, we need the inverse numerator relationship matrix𝐴−1. Because in practical routine predictions of breeding values, we have some-
thing in the order of 10 million animals that we predict breeding values for.
Hence the matrix 𝐴 has 10 million rows and 10 million columns. A matrix of
that size cannot be inverted explicitly with commonly known methods such as
described under https://en.wikipedia.org/wiki/Invertible_matrix. This would
have been the end of the BLUP animal model, if not Henderson published in
[[Henderson, 1976]] a set of simple rules to directly construct the matrix 𝐴−1
without setting up the numerator relationship matrix.

5.4 Structure of 𝐴−1
When looking at a concrete example of an inverse of a numerator relationship
matrix as shown below, we can discover some important facts. Let us assume
the following pedigree.

Table 5.2: Pedigree Used To Compute Inverse Numerator Rela-
tionship Matrix

Calf Sire Dam
1 NA NA
2 NA NA
3 NA NA
4 1 2
5 3 2

The numerator relationship matrix 𝐴 for the pedigree shown in Table 5.2 is
shown in (5.4).

https://en.wikipedia.org/wiki/Invertible_matrix
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𝐴 = ⎡⎢⎢⎢⎣
1 0 0 0.5 00 1 0 0.5 0.50 0 1 0 0.50.5 0.5 0 1 0.250 0.5 0.5 0.25 1

⎤⎥⎥⎥⎦ (5.4)

The matrix 𝐴−1 shown below corresponds to the inverse of the matrix 𝐴 from
(5.4).

𝐴−1 = ⎡⎢⎢⎢⎣
1.5 0.5 0 −1 00.5 2 0.5 −1 −10 0.5 1.5 0 −1−1 −1 0 2 00 −1 −1 0 2

⎤⎥⎥⎥⎦
From the above shown inverse 𝐴−1, we recognize that 𝐴−1 has a simpler struc-
ture than 𝐴 itself. The reason for this is that non-zero elements occur only
at matrix elements of 𝐴−1 corresponding to parents and progeny or to mates.
Furthermore off-diagonal elements corresponding to mates are positive and ele-
ments corresponding to parents and progeny are negative. These observations
were used by Henderson in [Henderson, 1976] to come up with the rules de-
scribed below.

5.5 Henderson’s Rule To Set Up 𝐴−1
We denote the row or column index corresponding to an animal of interest as 𝑖
and the row or column index belonging to the animals father as 𝑠 and the row or
column index corresponding to animal 𝑖’s mother as 𝑑. The rules differentiate
the following three cases

1. both parents of animal 𝑖 are known
2. only one parent of animal 𝑖 is known
3. both parents of animal 𝑖 are unknown

5.5.1 Both Parents Known

• add 2 to the diagonal-element (𝑖, 𝑖)
• add −1 to off-diagonal elements (𝑠, 𝑖), (𝑖, 𝑠), (𝑑, 𝑖) and (𝑖, 𝑑)
• add 12 to elements (𝑠, 𝑠), (𝑑, 𝑑), (𝑠, 𝑑), (𝑑, 𝑠)



72 CHAPTER 5. GENETIC COVARIANCES BETWEEN ANIMALS

5.5.2 Only One Parent Known

We assume that sire 𝑠 is known

• add 43 to diagonal-element (𝑖, 𝑖)
• add − 23 to off-diagonal elements (𝑠, 𝑖), (𝑖, 𝑠)
• add 13 to element (𝑠, 𝑠)

5.5.3 Both Parents Unknown

• add 1 to diagonal-element (𝑖, 𝑖)
The application of Henderson’s rules to construct 𝐴−1 directly will be a problem
in one of the coming exercises. When applying the above described rules, it has
to be noted well that this simple version of the rules are only valid for a pedigree
without inbreeding. We will see in section @ref(#derivationofhendersonsrules)
how to extend the simple rules such that they can be used for a general pedigree
with inbreeding.

5.6 Derivation of Henderson’s Rules

Henderson’s rules can be related to the so-called LDL-decomposition of the nu-
merator relationship matrix 𝐴. The result of this decomposition consists of the
equivalence between matrix 𝐴 and the product of three matrices 𝐿, 𝐷 and 𝐿𝑇 .
The matrix 𝐿 is a lower triangular matrix and the matrix 𝐷 is a diagonal matrix.
The reason for why we are doing this decomposition of 𝐴 is that the matrices 𝐿
and 𝐷 can much easier be inverted than the matrix 𝐴. The LDL-decomposition
is a general procedure in linear algebra and it can be applied to any symmetric
and positive-definite matrix not only to numerator relationship matrices. But
when the LDL-decomposition is applied to a numerator relationship matrix, the
matrices 𝐿 and 𝐷 do also have a special genetic meaning. This meaning is
revealed in the following derivation.

5.6.1 Decomposition of True Breeding Value and its Vari-
ance

The true breeding value (𝑢𝑖) of animal 𝑖 can be decomposed into the true breed-
ing values of animal 𝑖’s parents 𝑠 and 𝑑 and the mendelian sampling term 𝑚𝑖𝑢𝑖 = 12𝑢𝑠 + 12𝑢𝑑 + 𝑚𝑖 (5.5)



5.6. DERIVATION OF HENDERSON’S RULES 73

Applying the decomposition shown in (5.10) for all animals in the pedigree and
combining the decompositions into a matrix-vector notation, we get

𝑢 = 𝑃 ⋅ 𝑢 + 𝑚 (5.6)

where 𝑢 vector of true breeding values for all animals𝑃 matrix linking animals to their parents𝑚 vector of mendelian sampling terms

Equation (5.6) can be interpreted as regression of the true breeding values onto
parental breeding values. In such a regression the random term 𝑚 is like a
residual term. The genetic meaning of 𝑚 corresponds to the deviation of 𝑢𝑖
from the full-sib average of the true breeding values within the nuclear family
with parents 𝑠 and 𝑑. The term 𝑚 is called mendelian sampling term. The
source of 𝑚 is the fact that during meiosis, parental alleles are randomly assigned
to each progeny. Bulmer [[Bulmer, 1971]] has shown that 𝑚𝑖 are independent
from true breeding values of parents 𝑠 and 𝑑. Using this result, we take the
variance on both sides of (5.10) leading to

𝑣𝑎𝑟(𝑢𝑖) = 𝑣𝑎𝑟(12𝑢𝑠 + 12𝑢𝑑 + 𝑚𝑖)= 14𝑣𝑎𝑟(𝑢𝑠) + 14𝑣𝑎𝑟(𝑢𝑑) + 12𝑐𝑜𝑣(𝑢𝑠, 𝑢𝑑) + 𝑣𝑎𝑟(𝑚𝑖) (5.7)

From (5.1) together with the definition of the numerator relationship matrix 𝐴,
we know that

𝑣𝑎𝑟(𝑢𝑖) = (1 + 𝐹𝑖)𝜎2𝑢𝑣𝑎𝑟(𝑢𝑠) = (1 + 𝐹𝑠)𝜎2𝑢𝑣𝑎𝑟(𝑢𝑑) = (1 + 𝐹𝑑)𝜎2𝑢𝑐𝑜𝑣(𝑢𝑠, 𝑢𝑑) = (𝐴)𝑠𝑑𝜎2𝑢 = 2𝐹𝑖𝜎2𝑢 (5.8)

5.6.2 Variance of Mendelian Sampling Terms

Inserting the relations from (5.8) into (5.7) and solving for 𝑣𝑎𝑟(𝑚𝑖) gives the
following result
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𝑣𝑎𝑟(𝑚𝑖) = 𝑣𝑎𝑟(𝑢𝑖) − 14𝑣𝑎𝑟(𝑢𝑠) − 14𝑣𝑎𝑟(𝑢𝑑) − 12𝑐𝑜𝑣(𝑢𝑠, 𝑢𝑑)= (1 + 𝐹𝑖)𝜎2𝑢 − 14(1 + 𝐹𝑠)𝜎2𝑢 − 14(1 + 𝐹𝑑)𝜎2𝑢 − 12 ∗ 2 ∗ 𝐹𝑖 ∗ 𝜎2𝑢= (12 − 14(𝐹𝑠 + 𝐹𝑑)) 𝜎2𝑢 (5.9)

In case where only parent 𝑠 of animal 𝑖 is known the terms in (5.10) and (5.9)
change to

𝑢𝑖 = 12𝑢𝑠 + 12𝑢𝑑 + 𝑚𝑖 (5.10)

𝑢𝑖 = 12𝑢𝑠 + 𝑚𝑖𝑣𝑎𝑟(𝑚𝑖) = (1 − 14(1 + 𝐹𝑠)) 𝜎2𝑢= (34 − 14𝐹𝑠) 𝜎2𝑢 (5.11)

When both parents are unknown, we get

𝑢𝑖 = 𝑚𝑖𝑣𝑎𝑟(𝑚𝑖) = 𝜎2𝑢 (5.12)

5.6.3 Decomposition of 𝐴
The true breeding values 𝑢𝑠 of sire 𝑠 and 𝑢𝑑 of dam 𝑑 can be decomposed in a
similar way as shown for the true breeding value 𝑢𝑖 in (5.10).

𝑢𝑠 = 12𝑢𝑠𝑠 + 12𝑢𝑑𝑠 + 𝑚𝑠𝑢𝑑 = 12𝑢𝑠𝑑 + 12𝑢𝑑𝑑 + 𝑚𝑑 (5.13)

where 𝑠𝑠 sire of 𝑠𝑑𝑠 dam of 𝑠𝑠𝑑 sire of 𝑑𝑑𝑑 dam of 𝑑
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Using (5.13) together with (5.10) leads to the following expression for 𝑢𝑖
𝑢𝑖 = 12𝑢𝑠 + 12𝑢𝑑 + 𝑚𝑖= 12(12𝑢𝑠𝑠 + 12𝑢𝑑𝑠 + 𝑚𝑠) + 12(12𝑢𝑠𝑑 + 12𝑢𝑑𝑑 + 𝑚𝑑) + 𝑚𝑖= 14𝑢𝑠𝑠 + 14𝑢𝑑𝑠 + 14𝑢𝑠𝑑 + 14𝑢𝑑𝑑 + 12𝑚𝑠 + 12𝑚𝑑 + 𝑚𝑖

This type of decomposition can also be done for the grand-parents of animal𝑖 and further back until we get to true breeding values of animals with un-
known parents. Animals of ancestor generations with unknown parents are
called founder population. The process of decomposing true breeding values
back through all generations of a pedigree is called recursive decomposition
of animal 𝑖’s true breeding value. Because we know from (5.12) that the de-
composition of true breeding values 𝑢𝑘 for an animal 𝑘 with unknown parents is𝑢𝑘 = 𝑚𝑘, the result of the recursive decomposition of 𝑢𝑖 is a sum of mendelian
sampling terms linking the ancestors of 𝑖 back to the founder population.
Ordering all animals in a pedigree according to their age and writing the result of
the recursive decomposition of all true breeding values in matrix-vector notation
leads to 𝑢 = 𝐿 ⋅ 𝑚 (5.14)

The matrix 𝐿 is a lower triangular matrix. The row corresponding to animal 𝑖 is
the average of the rows in 𝐿 corresponding to parents 𝑠 and 𝑑 of 𝑖. The matrix𝐿 contains the path of the gene flow from the base population to all animals
in the population. From equation (5.14), we are computing the variance of all
true breeding values which leads to

𝑣𝑎𝑟(𝑢) = 𝑣𝑎𝑟(𝐿 ⋅ 𝑚)= 𝐿 ⋅ 𝑣𝑎𝑟(𝑚) ⋅ 𝐿𝑇= 𝐿 ⋅ (𝐷𝜎2𝑢) ⋅ 𝐿𝑇= 𝐿 ⋅ 𝐷 ⋅ 𝐿𝑇 𝜎2𝑢 = 𝐴𝜎2𝑢
From (??), the LDL-decomposition of 𝐴 follows directly as 𝐴 = 𝐿𝐷𝐿𝑇 . The
single components 𝑚𝑖 are independent of each other. This also means that𝑐𝑜𝑣(𝑚𝑖, 𝑚𝑗) = 0 for 𝑖 ≠ 𝑗. Hence the matrix 𝐷 is a diagonal matrix. In
section @ref(#variancemendeliansamplingterm) we have seen that 𝑣𝑎𝑟(𝑚𝑖)
always contain 𝜎2𝑢 as a factor. Hence it is reasonable to express 𝑣𝑎𝑟(𝑚)
as a product of a diagonal matrix 𝐷 times the genetic additive variance
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@ref(#variancemendeliansamplingterm).
The mixed model equations require the inverse numerator relationship matrix𝐴−1. Thanks to the LDL-decomposition of 𝐴, we can compute 𝐴−1 as𝐴−1 = (𝐿 ⋅ 𝐷 ⋅ 𝐿𝑇 )−1 = (𝐿𝑇 )−1 ⋅ 𝐷−1 ⋅ 𝐿−1 (5.15)

The inverse 𝐷−1 is easy to compute, because 𝐷 is a diagonal matrix. As a
consequence of that 𝐷−1 is also a diagonal matrix where the elements (𝐷−1)𝑖𝑖
correspond to the inverse of the elements of the original matrix 𝐷, i.e. (𝐷−1)𝑖𝑖 =1/(𝐷)𝑖𝑖. The matrix 𝐿−1 is also a lower triangular matrix and can easily com-
puted based on the two relations for the vector 𝑚. Based on (5.6), we know𝑚 = 𝑢 − 𝑃𝑢 = (𝐼 − 𝑃)𝑢 (5.16)

and from (5.14), we get 𝑚 = 𝐿−1𝑢 (5.17)

Setting both expressions for 𝑚 in (5.16) and (5.17) equal can be used to obtain𝐿−1
𝑚 = (𝐼 − 𝑃)𝑢 = 𝐿−1𝑢 (5.18)

Therefore, 𝐿−1 = 𝐼 − 𝑃 (5.19)

5.6.4 General Version of Henderson’s Rule

Based on the decomposition of 𝐴−1 shown in (5.15), the general version of
Henderson’s rule where inbreeding of animals can be accounted for can be sum-
marized as

• Start with a matrix 𝐴−1 where all elements are set to 0.
• Let 𝑑𝑖 be the 𝑖-th diagonal element of 𝐷−1 for animal 𝑖, assuming 𝑖 has

parents 𝑠 and 𝑑.
• Then add the following contributions to 𝐴−1

– 𝑑𝑖 to the element (𝑖, 𝑖)
– −𝑑𝑖/2 to the elements (𝑠, 𝑖), (𝑖, 𝑠), (𝑑, 𝑖), (𝑖, 𝑑)
– 𝑑𝑖/4 to the elements (𝑠, 𝑠), (𝑠, 𝑑), (𝑑, 𝑠), (𝑑, 𝑑)
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The contributions to rows and columns corresponding to parents 𝑠 and 𝑑 are
only added, if they are known. Because the elements 𝑑𝑖 are dependent on the
inbreeding coefficients 𝐹𝑠 and 𝐹𝑑 of parents 𝑠 and 𝑑, we have to find an efficient
way to compute inbreeding coefficients for all animals in a population.

5.7 Computing Inbreeding Coefficients

Inbreeding coefficients can be computed using different methods. From all these
methods, we are just showing the one method which was described in [[Quaas,
1976]]. This method is based on the properties of a second decomposition of the
numerator relationship matrix 𝐴 which is called the cholesky decomposition.
The cholesky decomposition of a matrix 𝐴 corresponds to𝐴 = 𝐶𝐶𝑇 (5.20)

where the matrix 𝐶 is a lower triangular matrix. At this point we have to
be clear about this. In practical routine evaluations, we will not explicitly
compute this decomposition, because we do not want to construct 𝐴 explicitly.
We are just using the properties of (5.20) to find an efficient way to compute
the diagonal elements (𝐴)𝑖𝑖 of 𝐴 without constructing the complete matrix 𝐴.
The diagonal elements (𝐴)𝑖𝑖 are important, because they contain the inbreeding
coefficients (𝐹𝑖), as (𝐴)𝑖𝑖 = 1 + 𝐹𝑖. Based on (5.20), (𝐴)𝑖𝑖 can be computed
from the components of 𝐶 as

(𝐴)𝑖𝑖 = 𝑖∑𝑗=1(𝐶)2𝑖𝑗 (5.21)

This can be shown with a small 3 × 3 matrix 𝐴
⎡⎢⎣(𝐴)11 (𝐴)12 (𝐴)13(𝐴)21 (𝐴)22 (𝐴)23(𝐴)31 (𝐴)32 (𝐴)33⎤⎥⎦ = ⎡⎢⎣(𝐶)11 0 0(𝐶)21 (𝐶)22 0(𝐶)31 (𝐶)32 (𝐶)33⎤⎥⎦∗⎡⎢⎣(𝐶)11 (𝐶)21 (𝐶)310 (𝐶)22 (𝐶)320 0 (𝐶)33⎤⎥⎦
For the above shown example, the diagonal elements (𝐴)𝑖𝑖 are computed as

(𝐴)11 = (𝐶)211(𝐴)22 = (𝐶)221 + (𝐶)222(𝐴)33 = (𝐶)231 + (𝐶)232 + (𝐶)233
This shows that diagonal elements (𝐴)𝑖𝑖 can be computed using just all the
components of row 𝑖 in 𝐶 up to the diagonal. Next, we have to show how to
compute the components of 𝐶.
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5.7.1 Recursive Computation of 𝐶
We are setting the two decompositions of 𝐴 equal which leads to𝐴 = 𝐶 ∗ 𝐶𝑇 = 𝐿 ∗ 𝐷 ∗ 𝐿𝑇 (5.22)

Let us write the matrix 𝐶 as a product of two matrices 𝐿 and 𝑆 where 𝐿
corresponds to the matrix from the LDL-decomposition and insert that product
into (5.22)𝐴 = 𝐶 ∗ 𝐶𝑇 = 𝐿 ∗ 𝑆 ∗ (𝐿 ∗ 𝑆)𝑇 = 𝐿 ∗ 𝑆 ∗ 𝑆𝑇 ∗ 𝐿𝑇 = 𝐿 ∗ 𝐷 ∗ 𝐿𝑇 (5.23)

From (5.23), we conclude that 𝐷 = 𝑆 ⋅ 𝑆𝑇 where 𝑆 is also a diagonal matrix
with elements (𝑆)𝑖𝑖 = √(𝐷)𝑖𝑖. For our small example we get

⎡⎢⎣(𝐶)11 0 0(𝐶)21 (𝐶)22 0(𝐶)31 (𝐶)32 (𝐶)33⎤⎥⎦ = ⎡⎢⎣ 1 0 0(𝐿)21 1 0(𝐿)31 (𝐿)32 1⎤⎥⎦ ∗ ⎡⎢⎣(𝑆)11 0 00 (𝑆)22 00 0 (𝑆)33⎤⎥⎦
(5.24)

From (5.24), we can see that the diagonal elements (𝐶)𝑖𝑖 are equal to (𝑆)𝑖𝑖.
Therefore (𝐶)𝑖𝑖 = (𝑆)𝑖𝑖 = √(𝐷)𝑖𝑖 (5.25)

Earlier, we have seen that diagonal elements (𝐷)𝑖𝑖 of 𝐷 correspond to

(𝐷)𝑖𝑖 = 12 − 14 (𝐹𝑠 + 𝐹𝑑) = 1 − 0.25((𝐴)𝑠𝑠 + (𝐴)𝑑𝑑) (5.26)

and hence (𝐶)𝑖𝑖 = √1 − 0.25((𝐴)𝑠𝑠 + (𝐴)𝑑𝑑) (5.27)

The components (𝐴)𝑠𝑠 and (𝐴)𝑑𝑑 correspond to diagonal elements of 𝐴 of par-
ents of 𝑠 and 𝑑 which were computed earlier.
The off-diagonal elements of 𝐶 are computed as(𝐶)𝑖𝑗 = (𝐿)𝑖𝑗 ∗ (𝑆)𝑗𝑗 (5.28)

One property of the matrix 𝐿 is that any element (𝐿)𝑖𝑗 is equal to the average
of elements (𝐿)𝑠𝑗 and (𝐿)𝑑𝑗, if 𝑠 and 𝑑 are parents of animal 𝑖. Using this we
get
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(𝐶)𝑖𝑗 = (𝐿)𝑖𝑗 ∗ (𝑆)𝑗𝑗= 12((𝐿)𝑠𝑗 + (𝐿)𝑑𝑗) ∗ (𝑆)𝑗𝑗= 12((𝐶)𝑠𝑗 + (𝐶)𝑑𝑗) (5.29)

With that we have shown how to compute all elements of 𝐶 recursively. This
requires an ordering of all animals according to their age.
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