
Chapter 6

Additional Aspects of
BLUP

This chapter introduces interesting additional aspects and special properties
of BLUP-based predicted breeding values. As we have seen in chapter 4, pre-
dicted breeding values which result from solving Henderson’s mixed model equa-
tions are predictions and these predictions always depend on some assumptions.
These assumptions are more or less valid depending on the dataset that is
analysed to produce the results. Furthermore, predicted breeding values are
a function of recorded data and such data is never perfect. Therefore, we need
a measure to quantify how good our predictions are. Such a measure is the
accurracy of the predicted breeding values.

One of the reasons, BLUP is nowadays the method of choice for predicting
breeding values is the fact that in the BLUP animal model all available in-
formation is used. This property can be shown by decomposing the predicted
breeding values from an animal model.

6.1 Accurracy

The accuracy for a BLUP-based animal model is no longer as easily derived as
with the prediction of breeding values based on own-performance or progeny
records. The animal model is a linear mixed effects model containing fixed and
random effects. Due to the properties of BLUP-based methods, the estimates
of the fixed effects and the prediction of the random effects have minimum error
variance. For the fixed effects, this error variance can be computed as

𝑣𝑎𝑟(𝛽 − ̂𝛽) = 𝑣𝑎𝑟( ̂𝛽)
81



82 CHAPTER 6. ADDITIONAL ASPECTS OF BLUP

because fixed effects 𝛽 do not have any variance. For the random effects 𝑢 the
prediction error variance (PEV) does not simplify to the variance of the pre-
dicted effects �̂�. Random effects by their nature do have a certain variance which
is part of the model specification. For a BLUP animal model the variance of the
random effects 𝑢 correspond to 𝑣𝑎𝑟(𝑢) = 𝐴 ∗ 𝜎2𝑢. Any meaningful prediction �̂�
of a random effect 𝑢 should also satisfy that the variance 𝑣𝑎𝑟(�̂�) predicts 𝑣𝑎𝑟(𝑢)
as closely as possible. Following this argument 𝑣𝑎𝑟(�̂�) cannot correspond to the
prediction error variance. The prediction error variance 𝑃𝐸𝑉 (�̂�) is computed
as

𝑃𝐸𝑉 (�̂�) = 𝑣𝑎𝑟(𝑢 − �̂�) = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(�̂�) − 2 ∗ 𝑐𝑜𝑣(𝑢, �̂�) = 𝑣𝑎𝑟(𝑢) − 𝑣𝑎𝑟(�̂�)
Henderson found that 𝑃𝐸𝑉 (�̂�) depends on the inverse of the coefficient matrix
in the mixed model equations.

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑍𝑍𝑇 𝑅−1𝑋 𝑍𝑇 𝑅−1𝑍 + 𝑈−1 ]−1 = [ 𝐶11 𝐶12𝐶21 𝐶22 ]
We can state that𝑃𝐸𝑉 (�̂�) = 𝑣𝑎𝑟(𝑢 − �̂�) = 𝑣𝑎𝑟(𝑢) − 𝑣𝑎𝑟(�̂�) = 𝐶22 (6.1)

For a single animal 𝑖, the prediction error variance is 𝑃𝐸𝑉 (�̂�𝑖) = 𝐶22𝑖𝑖 where 𝐶22𝑖𝑖
is the 𝑖-th diagonal element in the matrix 𝐶22. The accuracy of �̂�𝑖 is measured
by the squared correlation 𝑟2𝑢,�̂� between true and predicted breeding value. This
correlation is defined as

𝑟𝑢,�̂� = 𝑐𝑜𝑣(𝑢𝑖, �̂�𝑖)√𝑣𝑎𝑟(𝑢𝑖) ∗ 𝑣𝑎𝑟(�̂�𝑖) = 𝑣𝑎𝑟(�̂�𝑖)√𝑣𝑎𝑟(𝑢𝑖) ∗ 𝑣𝑎𝑟(�̂�𝑖) = √𝑣𝑎𝑟(�̂�𝑖)𝑣𝑎𝑟(𝑢𝑖) (6.2)

Combining equations (6.2) and (6.1) by solving both for 𝑣𝑎𝑟(�̂�𝑖) leads to

𝑣𝑎𝑟(�̂�𝑖) = 𝑣𝑎𝑟(𝑢𝑖) − 𝐶22𝑖𝑖𝑣𝑎𝑟(�̂�𝑖) = 𝑟2𝑢,�̂� ∗ 𝑣𝑎𝑟(𝑢𝑖)𝑃𝐸𝑉 (�̂�𝑖) = 𝐶22𝑖𝑖 = 𝑣𝑎𝑟(𝑢𝑖) − 𝑟2𝑢,�̂� ∗ 𝑣𝑎𝑟(𝑢𝑖) = (1 − 𝑟2𝑢,�̂�) ∗ 𝑣𝑎𝑟(𝑢𝑖) (6.3)

Solving equation (6.3) for 𝑟2𝑢,�̂� which is the measure commonly used to assign a
certain level of accuracy to the predicted breeding value �̂�𝑖 of a given animal 𝑖.

𝑟2𝑢,�̂� = 1 − 𝐶22𝑖𝑖𝑣𝑎𝑟(𝑢𝑖) = 1 − 𝑃𝐸𝑉 (�̂�𝑖)𝑣𝑎𝑟(𝑢𝑖) (6.4)
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From equation (6.4) it becomes clear that the smaller 𝑃𝐸𝑉 (�̂�𝑖) is the higher the
accuracy 𝑟2𝑢,�̂� is. In the limit where 𝑃𝐸𝑉 (�̂�𝑖) tends to 0, the accuracy will tend
to 1. Based on the definition of 𝑃𝐸𝑉 (�̂�𝑖) in (6.1), it can be seen that 𝑃𝐸𝑉 (�̂�𝑖)
tends to 0, if 𝑣𝑎𝑟(�̂�𝑖) tends towards 𝑣𝑎𝑟(𝑢𝑖). That means the better the variance𝑣𝑎𝑟(�̂�𝑖) of the predicted breeding values �̂�𝑖 approximates the variance 𝑣𝑎𝑟(𝑢𝑖),
the smaller the value for 𝑃𝐸𝑉 (�̂�𝑖) and the higher the accuracy 𝑟2𝑢,�̂� of the
predicted breeding value �̂�𝑖 will be. On the other hand, if 𝑣𝑎𝑟(�̂�𝑖) tends to 0
which means the prediction of 𝑣𝑎𝑟(𝑢𝑖) by 𝑣𝑎𝑟(�̂�𝑖) is very poor, 𝑃𝐸𝑉 (�̂�𝑖) tends
to 𝑣𝑎𝑟(𝑢𝑖) and the accuracy 𝑟2𝑢,�̂� tends to its minimum which is 0.

6.2 Confidence Intervals of Predicted Breeding
Values

The prediction error variance (PEV) determines the confidence interval of the
predicted breeding values. The square root of PEV corresponds to the standard
error of prediction (SEP).

𝑆𝐸𝑃 (�̂�𝑖) = √𝑃𝐸𝑉 (�̂�𝑖) = √(1 − 𝑟2𝑢,�̂�) ∗ 𝑣𝑎𝑟(𝑢𝑖)

Assuming the predicted breeding values �̂� follow a normal distribution and SEP
gives a measure of how much the predictions vary. For a given error probability
(𝛼) the confidence interval can be derived for probability of 1 − 𝛼. For a given
genetic standard deviation 𝜎𝑢 of 12, an error probability of 𝛼 = 0.05 and range
of accuracies, the width of the confidence intervals can be computed. The results
of these interval widths are shown in Table 6.1.
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Table 6.1: Widths of Confidence Intervals for Given Accuracies

Accurracy Interval Width
0.40 36.44
0.50 33.26
0.60 29.75
0.70 25.76
0.80 21.04
0.90 14.88
0.95 10.52
0.99 4.70

For a given predicted breeding value of 100 and an accuracy of 0.99 the con-
fidence interval is 100 ± 2.35. The same confidence interval is also shown in
Figure 6.1.

10097.65 102.35

α/2=0.025

Figure 6.1: Confidence Interval of Predicted Breeding Value

6.3 Relevance of Accurracies

The relevance that is assigned to the accuracies of the predicted breeding val-
ues depends on the livestock species and also on the individual breeder. The
assessment of the importance of the accuracies is not always easy and is differ-
ent whether we are looking at a single animal or whether we are looking at a
population.
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Predicted breeding values are unbiased, hence low accuracies are not considered
to be something “bad”. For single animals with predicted breeding values with
low accuracies, their predicted breeding value is expected to change more. But
the change of the predicted breeding values can be in both directions. Because
most breeders want to avoid negative changes, high accuracies are taken to be
important.

6.4 Response to Selection

The classical definition of accuracy as described above is the correlation 𝑟𝑢𝑖,�̂�𝑖
for a single animal 𝑖 across conceptual repeated sampling. This correlation
is a measure of the expected change of a predicted breeding value for animal𝑖 with increasing information. Together with the link of this correlation to
the standard error of prediction (SEP) of the predicted breeding value �̂�𝑖, the
quantity 𝑟𝑢𝑖,�̂�𝑖 can also be used to make statements about the potential risk
of producing offspring with undesired characteristics, when using animal 𝑖 as a
parent.

Accuracies are also important to predict genetic progress in a selection scheme.
This use applies only to large unrelated populations and was suitable for se-
lection programs that were based on selection index procedure for determining
parents of a future generation. However for a joint analysis of a complete popula-
tion, the relevant measure according to [Bijma, 2012] is the correlation between
true and predicted breeding values in the selection candidates. This correlation
is a property of a population and not of a single individual. More details on how
to estimate this “population accuracy” which should be used in the prediction
of selection response is described in [Legarra and Reverter, 2018].

In general, the following dependencies of a desired increase in population accu-
racy to other parameters in the breeding program can be established.

• generation intervals increase, because we need to wait for more progeny
to deliver a performance record

• more progeny per selection candidate must be tested, hence the number
of selection candidates and the selection intensities decrease

• costs for testing animals increase.

For livestock species such as cattle and horses, breeders usually assign too much
relevance to accuracies. In general selection response could be increased by low-
ering the generation interval and increasing the selection intensities and thereby
accepting lower levels of accuracies.
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6.5 Decomposition of Predicted Breeding Value

The mixed model equations as they are shown in (4.10) can be written in the
following abbreviated form 𝑀 ∗ 𝑠 = 𝑟

where 𝑀 coefficient matrix𝑠 vector of unknowns𝑟 vector of right-hand sides

The vector 𝑠 of unknowns in the mixed model equations consists of the vector ̂𝛽
of estimates of fixed effects and the vector �̂� of predicted breeding values, which
means

𝑠 = [ ̂𝛽�̂� ]
Because the vector ̂𝛽 has length 𝑝, the first 𝑝 components in 𝑠 correspond to
estimates of fixed effects. The remaining 𝑞 components of 𝑠 correspond to the𝑞 predicted breeding values of vector �̂�. Let us assume that we want to have a
closer look at how the predicted breeding value �̂�𝑖 of the animal at position 𝑖
in the vector �̂�. The component �̂�𝑖 can be found on position 𝑝 + 𝑖 in the vector𝑠. As a consequence of that the (𝑝 + 𝑖)-th line in 𝑀 contains the coefficients
that are relevant for the computation of the predicted breeding value �̂�𝑖. These
coefficients determine what type of information is used to compute �̂�𝑖. In what
follows, we describe how these coefficients are determined.
For the decomposition, we are using a simpler model which is shown in (6.5)𝑦𝑖 = 𝜇 + 𝑢𝑖 + 𝑒𝑖 (6.5)

where 𝑦𝑖 Observation for animal 𝑖𝑢𝑖 breeding value of animal 𝑖 with a variance of (1 + 𝐹𝑖)𝜎2𝑢𝑒𝑖 random residual effect with variance 𝜎2𝑒𝜇 single fixed effect
The above defined model is used to analyse a dataset in which all animals have an
observation. Animal 𝑖 has parents 𝑠 and 𝑑 and 𝑛 progeny 𝑘𝑗 (with 𝑗 = 1, … , 𝑛)
and 𝑛 mates 𝑙𝑗 (with 𝑗 = 1, … , 𝑛). From this it follows that progeny 𝑘𝑗 has
parents 𝑖 and 𝑙𝑗.
For this simple model (6.5) the mixed model equations also have a reduced
complexity. Because, we only have one fixed effect which is present in all obser-
vations the matrix 𝑋 has just one column of all ones. Because all animals have
an observation, the matrix 𝑍 corresponds to the identity matrix.
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Taking into account Henderson’s rule for setting up 𝐴−1 directly, the equation
for observation 𝑦𝑖 which corresponds to the (𝑖 + 1)-th1 equation in our mixed
effects model.

𝑦𝑖 = ̂𝜇 + [1 + 𝛼𝛿(𝑖) + 𝛼4 𝑛∑𝑗=1 𝛿(𝑘𝑗)] �̂�𝑖 − 𝛼2 𝛿(𝑖)�̂�𝑠 − 𝛼2 𝛿(𝑖)�̂�𝑑− 𝛼2 𝑛∑𝑗=1 𝛿(𝑘𝑗)�̂�𝑘𝑗 + 𝛼4 𝑛∑𝑗=1 𝛿(𝑘𝑗)�̂�𝑙𝑗 (6.6)

where 𝛼 ration between variance components 𝜎2𝑒/𝜎2𝑢𝛿(𝑗) contribution for animal 𝑗 to 𝐴−1
Solving (6.6) for �̂�𝑖 leads to

�̂�𝑖 = 11 + 𝛼𝛿(𝑖) + 𝛼4 ∑𝑛𝑗=1 𝛿(𝑘𝑗) [𝑦𝑖 − ̂𝜇 + 𝛼2 {𝛿(𝑖)(�̂�𝑠 + �̂�𝑑) + 𝑛∑𝑗=1 𝛿(𝑘𝑗)(�̂�𝑘𝑗 − 12 �̂�𝑙𝑗)}]
(6.7)

From the decomposition in (6.7), we can see that the predicted breeding value�̂�𝑖 consists of the following components

• Predicted breeding values �̂�𝑠 and �̂�𝑑 of parents 𝑠 and 𝑑 of 𝑖
• Own performance 𝑦𝑖 of 𝑖
• Predicted breeding values �̂�𝑘𝑗 and �̂�𝑙𝑗 of progeny 𝑘𝑗 and mates 𝑙𝑗

An explicit example of a decomposition in (6.7) will be used as an exercise
problem.

1For the general case, this would be (𝑝 + 𝑖)-th equation. In the simple example, we have𝑝 = 1.
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