
Appendix C

Computation with
Variances

C.1 Disclaimer

The summary shown below is based on the article [contributors, 2024]. At this
point, we restrict ourselves to the category of discrete random variables.

C.2 Additional Definitions and Concepts

In order to

C.2.1 Expected Value

The expected value 𝐸[𝑋] of a given discrete random variable 𝑋 and a function𝑔() is defined as

𝐸[𝑔(𝑋)] = ∑𝑥𝑖∈𝒳 𝑔(𝑥𝑖) ∗ 𝑃𝑟(𝑋 = 𝑥𝑖)
The above definition is mostly given with 𝑔() being the identity function. This
then leads to

𝐸[𝑋] = ∑𝑥𝑖∈𝒳 𝑥𝑖 ∗ 𝑃𝑟(𝑋 = 𝑥𝑖)
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The above definition can also be extended to more than one variable. Hence for
random variables 𝑋 and 𝑌 with a joint probability distribution 𝑃𝑟(𝑋, 𝑌 ) and
a function ℎ(), we can define

𝐸[ℎ(𝑋, 𝑌 )] = ∑(𝑥𝑖,𝑦𝑖)∈𝒳×𝒴 ℎ(𝑥𝑖, 𝑦𝑖) ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)= ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴 ℎ(𝑥𝑖, 𝑦𝑖) ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖) (C.1)

C.2.2 Properties of Expected Values

A constant factor 𝑎 multiplied to 𝑋 leads to

𝐸[𝑎𝑋] = ∑𝑥𝑖∈𝒳 𝑎 ∗ 𝑥𝑖 ∗ 𝑃𝑟(𝑋 = 𝑥𝑖) = 𝑎 ∗ ∑𝑥𝑖∈𝒳 𝑥𝑖 ∗ 𝑃𝑟(𝑋 = 𝑥𝑖) = 𝑎 ∗ 𝐸[𝑋]
The expected value of two random variables 𝑋 and 𝑌 with

𝐸[𝑋] = ∑𝑥𝑖∈𝒳 𝑥𝑖 ∗ 𝑃𝑟(𝑋 = 𝑥𝑖)
and

𝐸[𝑌 ] = ∑𝑦𝑖∈𝒴 𝑦𝑖 ∗ 𝑃𝑟(𝑌 = 𝑦𝑖)
Using the above shown random variables and assuming an existing joint proba-
bility distribution 𝑃(𝑋, 𝑌 ), the expected value 𝐸[𝑋 + 𝑌 ] of the sum of the two
random variables is given by

𝐸[𝑋 + 𝑌 ] = ∑(𝑥𝑖,𝑦𝑖)∈𝒳×𝒴(𝑥𝑖 + 𝑦𝑖) ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)= ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴(𝑥𝑖) ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖) + ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴 𝑦𝑖 ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)= ∑𝑥𝑖∈𝒳 𝑥𝑖 ∗ 𝑃𝑟(𝑋 = 𝑥𝑖) + ∑𝑦𝑖∈𝒴 𝑦𝑖 ∗ 𝑃𝑟(𝑌 = 𝑦𝑖)= 𝐸[𝑋] + 𝐸[𝑌 ] (C.2)
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C.2.3 Covariance

The covariance (𝐶𝑜𝑣(𝑋, 𝑌 )) between two random variables 𝑋 and 𝑌 is defined
as

𝐶𝑜𝑣(𝑋, 𝑌 ) = ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴 (𝑥𝑖 − 𝐸[𝑋])(𝑦𝑖 − 𝐸[𝑌 ]) ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)= ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴(𝑥𝑖𝑦𝑖 − 𝑥𝑖𝐸[𝑦] − 𝑦𝑖𝐸[𝑋] + 𝐸[𝑋]𝐸[𝑌 ]) ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)= ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴 𝑥𝑖𝑦𝑖 ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)− ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴 𝑥𝑖𝐸[𝑌 ] ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)− ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴 𝑦𝑖𝐸[𝑋] ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)+ ∑𝑥𝑖∈𝒳 ∑𝑦𝑖∈𝒴 𝐸[𝑋]𝐸[𝑌 ] ∗ 𝑃𝑟(𝑋 = 𝑥𝑖, 𝑌 = 𝑦𝑖)= 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ] − 𝐸[𝑌 ]𝐸[𝑋] + 𝐸[𝑋]𝐸[𝑌 ]= 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ] (C.3)

An alternative definition can be given in terms of expected values as

𝐶𝑜𝑣(𝑋, 𝑌 ) = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌 ])]= 𝐸[𝑋𝑌 − 𝑋𝐸[𝑌 ] − 𝑌 𝐸[𝑋] + 𝐸[𝑋]𝐸[𝑌 ]]= 𝐸[𝑋𝑌 ] − 2𝐸[𝑋]𝐸[𝑌 ] + 𝐸[𝑋]𝐸[𝑌 ]= 𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ] (C.4)

C.3 Variance

The variance (𝑉 𝑎𝑟(𝑋)) of a given discrete random variable 𝑋 is defined as

𝑉 𝑎𝑟(𝑋) = ∑𝑥𝑖∈𝒳(𝑥𝑖 − 𝐸[𝑋])2 ∗ 𝑃𝑟(𝑋 = 𝑥𝑖)
Combining both definition leads to the following alternative formulation of the
variance
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𝑉 𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝐸[𝑋])2]= 𝐸[𝑋2 − 2𝑋𝐸[𝑋] + (𝐸[𝑋])2]= 𝐸[𝑋2] − 2𝐸[𝑋]𝐸[𝑋] + (𝐸[𝑋])2= 𝐸[𝑋2] − 2(𝐸[𝑋])2 + (𝐸[𝑋])2= 𝐸[𝑋2] − (𝐸[𝑋])2 (C.5)

C.3.1 Variance of a Factor Times a Random Variable

The variance of a constant factor 𝑎 times a random variable 𝑋 is

𝑉 𝑎𝑟(𝑎𝑋) = 𝐸[(𝑎𝑋 − 𝐸[𝑎𝑋])2]= 𝐸[(𝑎𝑋 − 𝑎𝐸[𝑋])2]= 𝐸[𝑎2 ∗ (𝑋 − 𝐸[𝑋])2]= 𝑎2 ∗ 𝐸[(𝑋 − 𝐸[𝑋])2]= 𝑎2 ∗ 𝑉 𝑎𝑟(𝑋)
(C.6)

C.3.2 Variance of a Sum

Using the alternative formulation for the sum of two random variables we have

𝑉 𝑎𝑟(𝑋 + 𝑌 ) = 𝐸[(𝑋 + 𝑌 )2] − (𝐸[𝑋 + 𝑌 ])2= 𝐸[𝑋2 + 2𝑋𝑌 + 𝑌 2] − (𝐸[𝑋] + 𝐸[𝑌 ])2= 𝐸[𝑋2] + 2𝐸[𝑋𝑌 ] + 𝐸[𝑌 2] − (𝐸[𝑋])2 − 2𝐸[𝑋]𝐸[𝑌 ] + (𝐸[𝑌 ])2= 𝐸[𝑋2] − (𝐸[𝑋])2 + 𝐸[𝑌 2] − (𝐸[𝑌 ])2 + 2(𝐸[𝑋𝑌 ] − 𝐸[𝑋]𝐸[𝑌 ])= 𝑉 𝑎𝑟(𝑋) + 𝑉 𝑎𝑟(𝑌 ) + 2𝐶𝑜𝑣(𝑋, 𝑌 ) (C.7)

C.4 Vector Valued Random Variables

So far, random variables such as 𝑋 and 𝑌 were scalar valued. That means an
instance 𝑥𝑖 or 𝑦𝑖 of the random variables are scalar values.
Vector-valued random variables such as ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋 of length 𝑁 can be thought of as an
extension of scalar-valued random variables. An instance of ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋 which is denoted
as ⃗⃗ ⃗⃗𝑥𝑖 is a vector with 𝑁 elements. Hence
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⃗⃗ ⃗⃗𝑥𝑖 = ⎡⎢⎢⎣
𝑥𝑖1𝑥𝑖2...𝑥𝑖𝑁

⎤⎥⎥⎦
C.4.1 Expected Value

The expected value 𝐸[ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋] of the random variable ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋 is a vector of expected values
of the single elements of ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋

𝐸[ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋] = ⎡⎢⎢⎣
𝐸[𝑋1]𝐸[𝑋2]...𝐸[𝑋𝑁] ⎤⎥⎥⎦

C.4.2 Variance

The variance of a vector-valued random variable is a variance-covariance matrix.

𝑉 𝑎𝑟[ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋] = ⎡⎢⎢⎣
𝑉 𝑎𝑟[𝑋1] 𝐶𝑜𝑣[𝑋1, 𝑋2] ... 𝐶𝑜𝑣[𝑋1, 𝑋𝑁]𝐶𝑜𝑣[𝑋2, 𝑋1] 𝑉 𝑎𝑟[𝑋2] ... 𝐶𝑜𝑣[𝑋2, 𝑋𝑁]... ... ... ...𝐶𝑜𝑣[𝑋𝑁, 𝑋1] ... ... 𝑉 𝑎𝑟[𝑋𝑁] ⎤⎥⎥⎦

C.5 Continuous Random Variables

All the material presented so far is valid for discrete random variables. But
all relationships can also be adpated to continuous random variables. The only
adaptations that we have to show here is the definition of the expected value.
Hence for a continuous random variable 𝑋 and a function 𝑔(), the expected
value is defined as

𝐸[𝑔(𝑋)] = ∫𝑥∈𝒳 𝑔(𝑥)𝑓(𝑥)𝑑𝑥
where 𝑓(𝑥) is the density function of the random variable 𝑋.
Compared to the discrete case, the summation was replaced by the integral and
the probability function was replaced by the density. But apart from that all
the above relations can also be used for continuous random variables.
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