Livestock Breeding and Genomics

Peter von Rohr

2024-09-20

Content

- Course administration
- Linear Algebra
- R/RStudio
- Introduction to Livestock Breeding and Genomics

Information

- Website: https://charlotte-ngs.github.io/lbgfs2024
- Moodle:

https://moodle-app2.let.ethz.ch/course/view.php?id=23928

Credit points: Written exam on 20.12.2024

Your Input

... is always welcome

- due to special status of course, instant input
- course evaluation might not be helpful
- other information you want to tell us
 - Your name
 - Study Major
 - Why this course
 - Previous experiences in animal breeding / R / statistics / ...
 - Your expectation

Goals

- Official goals from Vorlesungsverzeichnis
- Understanding basic concepts such as
 - selection
 - breeding value
 - selection response
 - difference between production and breeding
- Be able to explain certain phenomena
- Better understanding of statistics
- Exercises in R

Course program

Week	Date	Торіс
1	20.09	Introduction to Livestock Breeding and Genomics
2	27.09	Review of Quantitative Genetics/Single Locus
3	04.10	Genetic Evaluation with Different Sources of Information
4	11.10	Genetic Covariance Between Relatives
5	18.10	Best Linear Unbiased Prediction (BLUP) -
		Univariate Analysis
6	25.10	BLUP - Additional Aspects
7	01.11	BLUP - Multiple Traits
8	08.11	Variance and Inbreeding
9	15.11	Variance Components Estimation
10	22.11	Genomic Selection
11	29.11	Genom-Wide Association Studies
12	06.12	Review on Selection Index Theory
13	13.12	Test-Exam and Questions
14	20.12	Exam

Exercises

- Topics of each lecture are repeated in exercise
- Exercise hours can be used to work on problems
- Solutions are presented one week later
- Exercise platform: (next slide)

Three different options are available (see course website)

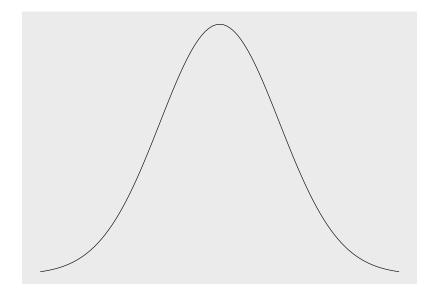
- $1. \ Webr: \ https://webr.r-wasm.org/latest$
- 2. Posit cloud: https://posit.cloud
- 3. Run your own platform: Follow steps on https://posit.co/download/rstudio-desktop

Prerequisites

None

- all concepts will be explained
- Helpful are
 - quantitative genetics
 - statistics
 - linear algebra
 - R

Introduction to Livestock Breeding


Terminology

- Livestock breeding
- Animal breeding
- Ambiguous use
- History
 - Traditional breeding
 - Genomics

What happens if ...

- ... selection is based on phenotypic observations of only a few traits
- how is selection response affected by such a strategy
- not phenotypes are passed from parents to offspring
- double role of genotype/genetic background of animals

Distribution of Phenotypes

• Selection response R is given by the breeders equation

 $R = i * r * \sigma_g$

with i = z/p, in R: dnorm(qnorm(1-p)) / p

 Selection response per year: R/L where L is the generation interval

Fundamental Questions

- What is the best animal?
- ► How to find it?

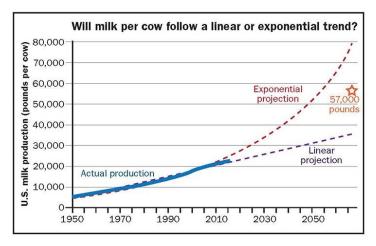
Phenotypes and Genotypes

$$Y = V + E$$

where Y is observed and E can partially be observed and V is unknown

Improving Animal Populations

- Improvement via breeding \rightarrow long-term
- Two tools
- 1. selection
 - process to determine parents of next generation
 - natural selection in wildlife and livestock
 - artificial selection in livestock: fix a goal and rank
- 2. mating
 - which animal is bred to which
 - extreme
 - complementary
 - heterosis crossbreeding

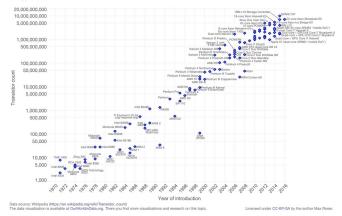

Statistics

Computer Science

- Methods have been developed in 1940's 1950's
- Progress occured later
- Development of cheap computing power

Milk Yield

Milk Performance per Cow (Source: https://hoards.com/article-20808-what-will-dairy-cows-andfarms-look-like-in-50-years.html)


Figure 1: Yearly Milk Yield per Cow in the USA

Computer Performance

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Source: https://en.wikipedia.org/wiki/Moore%27s_law

Figure 2: Computing Performance According To Moore's Law