Quantitative Genetics - Multiple Loci

Peter von Rohr

2024-10-11

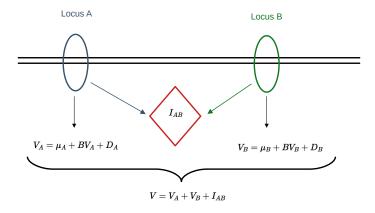
Two and more Loci

- Two loci A and B having an effect on the same quantitative trait.
- Additional effect in genetic model: Interaction effect (also known as epistasis)
- Interaction occurs if effect of one locus can have an influence on the effect of the other locus
- Interaction is quantified by

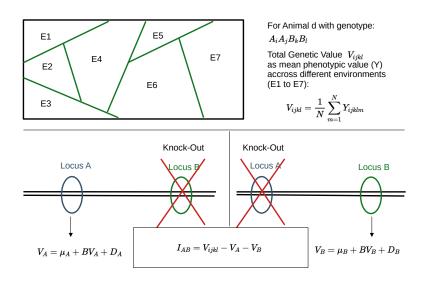
$$I_{AB} = V - V_A - V_B$$

Influence of Two Loci on Quantitative Trait

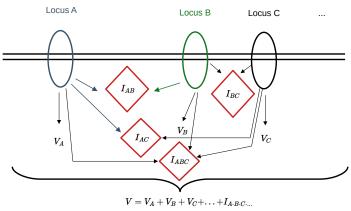
Two Loci Influencing a Quantitative Trait



Quantify Interaction Effect



More Than Two Loci



Many Loci Influencing a Quantitative Trait

with $I_{A \cdot B \cdot C} = I_{AB} + I_{AC} + I_{BC} + I_{ABC}$

Summary Genetic Model

Given genetic model

$$V = V_A + V_B + V_C + \ldots + I_{A \cdot B \cdot C \cdot \ldots}$$

Decomposition

$$V = \mu_A + BV_A + D_A + \mu_B + BV_B + D_B + \mu_C + BV_C + D_C + \dots + I_{A \cdot B \cdot C \cdot \dots}$$

Re-group

$$V = \mu_A + \mu_B + \mu_C + \dots + BV_A + BV_B + BV_C + \dots + D_A + D_B + D_C + \dots + I_{A \cdot B \cdot C \cdot \dots}$$

Collect

$$V = \mu + BV + D + I_{A \cdot B \cdot C \cdot \dots}$$

Extend to Phenotypes

We know from earlier

$$Y = V + E$$

Insert decomposition of V

$$Y = \mu + BV + D + I_{A \cdot B \cdot C \cdot ...} + E$$

▶ For breeding, only *BV* is important

$$Y = \mu + BV + E^*$$

with $E^* = D + I_{A \cdot B \cdot C \cdot ...} + E$

Non-genetic environment is split into

- ▶ known part, corresponding to additional information on animal, like herd, age, sex, ... leads to vector of fixed effects and regression coefficients → b
- unknown part leads to random resiudal part $\rightarrow e$

Model of Phenotypic Observation

Phenotypic observation (y_i) of an animal *i* can be modelled as

$$y_i = x_i^T \cdot b + u_i + e_i$$

where

- y_i phenotypic observation of animal *i*
- *x_i* vector of regression covariates or indicator values for fixed effects
- *b* vector of unknown fixed effects and unknown regression coefficients
- *u_i* random breeding value of animal *i*
- e_i random environmental effects of animal i

Aggregation over Population

Take all observations from all animals in a given population

 $y = X \cdot b + Z \cdot u + e$

where

- y vector of phenotypic observations of all animals
- *b* vector of unknown fixed effects and unknown regression coefficients
- *u* vector of random breeding values of all animals
- e vector of random environmental effects
- X design matrix with regression covariates or indicator values for fixed effects
- Z design matrix relating breeding values to observations

Example Dataset I

Animal	Sire	Dam	Herd	Weaning Weight	Breast Circumference
14	1	5	1	2.44	1.48
15	1	5	1	2.41	1.47
16	1	6	2	2.51	1.50
17	1	6	2	2.55	1.47
20	2	8	1	2.34	1.46
21	2	8	1	1.99	1.38

Example Dataset II

- Weaning weight as response variable y
- Breast circumference as regression variable
- Herd as fixed effect
- Breeding values for
 - animals with observations: own-performance
 - sires: sire model
 - all animals in pedigree: animal model