BLUP

Peter von Rohr

2024-11-01

Recap: Linear Mixed Effects Model

$$y = X \cdot b + Z \cdot u + e$$

where

- y vector of phenotypic observations of all animals
- *b* vector of unknown fixed effects and unknown regression coefficients
- *u* vector of random breeding values of all animals
- e vector of random environmental effects
- X design matrix with regression covariates or indicator values for fixed effects
- Z design matrix relating breeding values to observations

Solution - BLUP

- Solution to correction problem in selection index: BLUP
- Estimates environmental effects at the same time as breeding values are predicted
- Linear mixed effects model
- Meaning of BLUP
 - B stands for best → correlation between true (u) and its prediction (û) is maximal or the prediction error variance (var(u û)) is minimal.
 - L stands for linear → predicted breeding values are linear functions of the observations (y)
 - ► U stands for unbiased → expected values of the predicted breeding values are equal to the true breeding values
 - P stands for prediction

Example Dataset I

Animal	Sire	Dam	Herd	Weaning Weight	Breast Circumference
14	1	5	1	2.44	1.48
15	1	5	1	2.41	1.47
16	1	6	2	2.51	1.50
17	1	6	2	2.55	1.47
20	2	8	1	2.34	1.46
21	2	8	1	1.99	1.38

Animal	Sire	Dam	Herd	Weaning Weight
12	1	4	1	2.61
13	1	4	1	2.31
14	1	5	1	2.44
15	1	5	1	2.41
16	1	6	2	2.51
17	1	6	2	2.55
18	1	7	2	2.14
19	1	7	2	2.61
20	2	8	1	2.34
21	2	8	1	1.99
22	2	9	1	3.10
23	2	9	1	2.81
24	2	10	2	2.14
25	2	10	2	2.41
26	3	11	2	2.54
27	3	11	2	3.16

Example Dataset II

$$y_{ij} = \mu + herd_j + e_{ij}$$

- Result: Estimate of effect of herd j
- Try with given dataset

Linear Mixed Effects Model

What about breeding value u_i for animal i?

- Problem: breeding values have a variance σ_u^2 and co-variances
- Cannot be specified in simple linear model

\rightarrow Linear Mixed Effects Model (LME)

$$y_{ijk} = \mu + \beta_j + u_i + e_{ijk}$$

Matrix-Vector Notation

LME for all animals of a population

 \rightarrow use matrix-vector notation

$$y = X\beta + Zu + e$$

where

- y vector of length n of all observations
- β vector of length p of all fixed effects
- X $n \times p$ design matrix linking the fixed effects to the observations
- u vector of length n_u of random effects
- $Z \quad n \times n_u$ design matrix linking random effect to the observations
- *e* vector of length *n* of random residual effects.

Expected Values and Variances

Expected values

$$E(u) = 0$$
 and $E(e) = 0
ightarrow E(y) = Xeta$

Variances

$$var(u) = U$$
 and $var(e) = R$

with $cov(u, e^T) = 0$,

 $var(y) = Z * var(u) * Z^T + var(e) = ZUZ^T + R = V$

Estimates of unknown Parameters

Use properties of BLUP to design predictor \widehat{u}

• Linear: predictor \hat{u} is a linear function of data

$$\widehat{u} = M \cdot (y - k)$$

• Unbiased: $E(\hat{u}) = E(u)$. Above we have specified E(u) = 0

$$k = E(y)$$

• Best: Prediction error variance $var(u - \hat{u})$ is minimal

$$M = UZ^T V^{-1}$$

Result

Summary of above results, using $E(y) = X\beta$

$$\hat{u} = UZ^T V^{-1} (y - X\beta)$$

For *u* and *y* following a Gaussian normal distribution

$$\hat{u} = E(u|y)$$

 \blacktriangleright β unknown, replace it by general least squares estimate

$$\hat{\beta} = (X^T V^{-1} X)^{-1} X^T V^{-1} y$$

Mixed Model Equations

▶ Problem: V^{-1}

Same solutions obtained with following set of equations

$$\begin{bmatrix} X^{\mathsf{T}}R^{-1}X & X^{\mathsf{T}}R^{-1}Z \\ Z^{\mathsf{T}}R^{-1}X & Z^{\mathsf{T}}R^{-1}Z + U^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^{\mathsf{T}}R^{-1}y \\ Z^{\mathsf{T}}R^{-1}y \end{bmatrix}$$

Sire Model

Breeding value of sire as random effect:

$$y = X\beta + Zs + e$$

* Expected values

$$E(s) = 0$$
 and $E(e) = 0 \rightarrow E(y) = X\beta$

$$var(s) = U_s$$
 and $var(e) = R$

• Unrelated sires:
$$var(s) = U_s = I\sigma_s^2$$

Example

[2.61]		[1	0]		[1	0	0]			$\left[e_1 \right]$	
2.31		1	0		1	0	0			e ₂	
2.44		1	. 0		1	0	0			e ₃	
2.41		1	0	$\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} +$	1	0	0		<i>e</i> ₄		
2.51		0	1		1	0	0		<i>e</i> 5		
2.55		0	1		1	0	0			<i>e</i> ₆	
2.14		0	1		1	0	0	[_]	e7		
2.61		0	1		1	0	0		$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} +$	<i>e</i> ₈	
2.34	-	1	0		0	1	0			e9	
1.99		1	0		0	1	0	[33]		<i>e</i> ₁₀	
3.1		1	0		0	1	0			<i>e</i> ₁₁	
2.81		1 0	0		0	1	0			e ₁₂	
2.14			1		0	1	0		e ₁₃		
2.41		0	1		0	1	0			<i>e</i> ₁₄	
2.54		0	1		0	0	1		e ₁₅		
3.16		0	1		0	0	1			[<i>e</i> ₁₆]	

Animal Model

Breeding value for all animals as random effects

$$y = X\beta + Zu + e$$

Expected values

$$E(u) = 0$$
 and $E(e) = 0 \rightarrow E(y) = X\beta$

Variances

$$\mathit{var}(\mathit{u}) = \mathit{U} = \mathit{A} * \sigma_{\mathit{u}}^2$$
 and $\mathit{var}(\mathit{e}) = \mathit{R}$

Matrix A: numerator relationship matrix and σ²_u the genetic additive variance