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Structure of A−1

▶ Look at a simple example of A and A−1

Table 1: Pedigree Used To Compute Inverse Numerator Relationship
Matrix

Calf Sire Dam

1 NA NA
2 NA NA
3 NA NA
4 1 2
5 3 2



Numerator Relationship Matrix A

A =


1.0000 0.0000 0.0000 0.5000 0.0000
0.0000 1.0000 0.0000 0.5000 0.5000
0.0000 0.0000 1.0000 0.0000 0.5000
0.5000 0.5000 0.0000 1.0000 0.2500
0.0000 0.5000 0.5000 0.2500 1.0000





Inverse Numerator Relationship Matrix A−1

A−1 =


1.5000 0.5000 0.0000 −1.0000 0.0000
0.5000 2.0000 0.5000 −1.0000 −1.0000
0.0000 0.5000 1.5000 0.0000 −1.0000

−1.0000 −1.0000 0.0000 2.0000 0.0000
0.0000 −1.0000 −1.0000 0.0000 2.0000





Conclusions

▶ A−1 has simpler structure than A itself
▶ Non-zero elements only at positions of parent-progeny and

parent-mate positions
▶ Parent-mate positions are positive, parent-progeny are

negative



Henderson’s Rules

▶ Based on LDL-decomposition of A

A = L ∗ D ∗ LT

where L Lower triangular matrix
D Diagonal matrix

▶ Why?
▶ matrices L and D can be inverted directly, we ’ll see how . . .
▶ construct A−1 = (LT )−1 ∗ D−1 ∗ L−1



Example

L =


1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.5 0.5 0.0 1.0 0.0
0.0 0.5 0.5 0.0 1.0



D =


1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.5 0.0
0.0 0.0 0.0 0.0 0.5


→ Verify that A = L ∗ D ∗ LT



Decomposition of True Breeding Value

▶ True breeding value (ui) of animal i

ui = 1
2us + 1

2ud + mi

▶ Do that for all animals in pedigree



Decomposition for Example

u1 = m1

u2 = m2

u3 = m3

u4 = 1
2u1 + 1

2u2 + m4

u5 = 1
2u3 + 1

2u2 + m5



Matrix Vector Notation

▶ Define vectors u and m as
▶ Coefficients of us and ud into matrix P

u =


u1
u2
u3
u4
u5

 , m =


m1
m2
m3
m4
m5

 , P =


0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.5 0.5 0.0 0.0 0.0
0.0 0.5 0.5 0.0 0.0


▶ Result: Decomposition of true breeding values

u = P · u + m



Recursive Decomposition

▶ True breeding values of s and d can be decomposed into

us = 1
2uss + 1

2uds + ms

ud = 1
2usd + 1

2udd + md

where ss sire of s
ds dam of s
sd sire of d
dd dam of d



Example

▶ Add animal 6 with parents 4 and 5 to our example pedigree

Calf Sire Dam

1 NA NA
2 NA NA
3 NA NA
4 1 2
5 3 2
6 4 5



First Step Of Decomposition

u1 = m1

u2 = m2

u3 = m3

u4 = 1
2u1 + 1

2u2 + m4

u5 = 1
2u3 + 1

2u2 + m5

u6 = 1
2u4 + 1

2u5 + m6



Decompose Parents

u1 = m1

u2 = m2

u3 = m3

u4 = 1
2m1 + 1

2m2 + m4

u5 = 1
2m3 + 1

2m2 + m5

u6 = 1
2

(1
2(u1 + u2) + m4

)
+ 1

2

(1
2(u3 + u2) + m5

)
+ m6

= 1
4(u1 + u2) + 1

2m4 + 1
4(u3 + u2) + 1

2m5 + m6



Decompose Grand Parents

▶ Only animal 6 has true breeding values for grand parents

u6 = 1
4(u1 + u2) + 1

2m4 + 1
4(u3 + u2) + 1

2m5 + m6

= 1
4m1 + 1

4m2 + 1
4m3 + 1

4m2 + 1
2m4 + 1

2m5 + m6

= 1
4m1 + 1

2m2 + 1
4m3 + 1

2m4 + 1
2m5 + m6



Summary

u1 = m1

u2 = m2

u3 = m3

u4 = 1
2m1 + 1

2m2 + m4

u5 = 1
2m3 + 1

2m2 + m5

u6 = 1
4m1 + 1

2m2 + 1
4m3 + 1

2m4 + 1
2m5 + m6



Matrix-Vector Notation

▶ Use vectors u and m again

u =


u1
u2
u3
u4
u5
u6

 , m =


m1
m2
m3
m4
m5
m6

 , L =


1.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00
0.50 0.50 0.00 1.00 0.00 0.00
0.00 0.50 0.50 0.00 1.00 0.00
0.25 0.50 0.25 0.50 0.50 1.00


▶ Result of recursive decomposition of ui

u = L · m



Property of L
▶ Meaning of Element (L)ij of Matrix L:

=

u = L m

*

*



Property of L II

▶ Element (L)ij (i > j) is the proportion of mj in ui
▶ Given: i has parents s and d
▶ mj can only come from us and ud , because

ui = 1/2us + 1/2ud + mi
▶ The proportion of mj in ui is half the proportion of mj in us

and half the proportion of mj in ud

→ Lij = 1
2Lsj + 1

2Ldj



Example
▶ L41, L62

= *

L41

L62



Variance From Recursive Decomposition

var(u) = var(L · m)
= L · var(m) · LT

where var(m) is the variance-covariance matrix of all components
in vector m.

▶ covariances of components mi , cov(mi , mj) = 0 for i ̸= j
▶ var(mi) computed as shown below



What is the Variance var(mi)
▶ Decomposition of var(ui) using ui = 1/2us + 1/2ud + mi

var(ui) = var(1/2us + 1/2ud + mi)

= var(1/2us) + var(1/2ud) + 1
2 ∗ cov(us , ud) + var(mi)

= 1/4var(us) + 1/4var(ud) + 1
2 ∗ cov(us , ud) + var(mi)

▶ From the definition of A

var(ui) = (1 + Fi)σ2
u

var(us) = (1 + Fs)σ2
u

var(ud) = (1 + Fd)σ2
u

cov(us , ud) = (A)sdσ2
u = 2Fiσ

2
u



Variance of Mendelian Sampling Terms
▶ What is var(mi)?
▶ Solve equation for var(ui) for var(mi)

var(mi) = var(ui) − 1/4var(us) − 1/4var(ud) − 2 ∗ cov(us , ud)

▶ Insert definitions from A

var(mi) = (1 + Fi)σ2
u − 1/4(1 + Fs)σ2

u − 1/4(1 + Fd)σ2
u − 1

2 ∗ 2 ∗ Fiσ
2
u

=
(1

2 − 1
4(Fs + Fd)

)
σ2

u

▶ True, for both parents s and d of animal i are known



Unknown Parents
▶ Only parent s of animal i is known

ui = 1
2us + mi

var(mi) =
(

1 − 1
4(1 + Fs)

)
σ2

u

=
(3

4 − 1
4Fs

)
σ2

u

▶ Both parents are unknown

ui = mi

var(mi) = σ2
u



Result

▶ variance-covariance matrix var(m) can be written as D ∗ σ2
u

where D is diagnoal

→ var(u) = L · var(m) · LT

= L · D ∗ σ2
u · LT

= L · D · LT ∗ σ2
u

= Aσ2
u

→ A = L · D · LT



Inverse of A Based on L and D

▶ Matrix A was decomposed into A = L · D · LT

▶ Get A−1 as A−1 = (LT )−1D−1L−1

▶ D−1 is diagonal again with elements

(D−1)ii = 1/(D)ii



Inverse of L

▶ Compute m based on the two decompositions of u

u = P · u + m and u = L · m

▶ Solve both for m and set them equal

m = u − P · u = (I − P) · u and m = L−1 · u

(I − P) · u = L−1 · u

and

L−1 = I − P



Example

Calf Sire Dam

1 NA NA
2 NA NA
3 NA NA
4 1 2
5 3 2



Matrix D−1

▶ Because D is diagonal

D =


1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.5 0.0
0.0 0.0 0.0 0.0 0.5


▶ We get D−1 as

D−1 =


1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 2.0 0.0
0.0 0.0 0.0 0.0 2.0





Matrix L−1

▶ Use L−1 = I − P
▶ Matrix P from simple decomposition

P =


0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.5 0.5 0.0 0.0 0.0
0.0 0.5 0.5 0.0 0.0


▶ Therefore

L−1 = I − P =


1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0

−0.5 −0.5 0.0 1.0 0.0
0.0 −0.5 −0.5 0.0 1.0





Decomposition of A−1 I

A−1 = (L−1)T · D−1 · L−1

(L−1)T · D−1
1.0 0.0 0.0 −0.5 0.0
0.0 1.0 0.0 −0.5 −0.5
0.0 0.0 1.0 0.0 −0.5
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0

 ·


1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 2.0 0.0
0.0 0.0 0.0 0.0 2.0



=


1.0 0.0 0.0 −1.0 0.0
0.0 1.0 0.0 −1.0 −1.0
0.0 0.0 1.0 0.0 −1.0
0.0 0.0 0.0 2.0 0.0
0.0 0.0 0.0 0.0 2.0





Decomposition of A−1 II

A−1 = (L−1)T · D−1 · L−1
1.0 0.0 0.0 −1.0 0.0
0.0 1.0 0.0 −1.0 −1.0
0.0 0.0 1.0 0.0 −1.0
0.0 0.0 0.0 2.0 0.0
0.0 0.0 0.0 0.0 2.0

 ·


1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0

−0.5 −0.5 0.0 1.0 0.0
0.0 −0.5 −0.5 0.0 1.0



=


1.5 0.5 0.0 −1.0 0.0
0.5 2.0 0.5 −1.0 −1.0
0.0 0.5 1.5 0.0 −1.0

−1.0 −1.0 0.0 2.0 0.0
0.0 −1.0 −1.0 0.0 2.0





Decomposition of A−1 III



Henderson’s Rules

▶ Both Parents Known
▶ add 2 to the diagonal-element (i , i)
▶ add −1 to off-diagonal elements (s, i), (i , s), (d , i) and (i , d)
▶ add 1

2 to elements (s, s), (d , d), (s, d), (d , s)
▶ Only One Parent Known

▶ add 4
3 to diagonal-element (i , i)

▶ add − 2
3 to off-diagonal elements (s, i), (i , s)

▶ add 1
3 to element (s, s)

▶ Both Parents Unknown
▶ add 1 to diagonal-element (i , i)

▶ Valid without inbreeding


