
Chapter 4

Model Selection

4.1 Why Statistical Modelling

In nature we can observe two types of dependencies between physical quantities.

1. deterministic dependencies
2. stochastic dependencies.

The difference between the two types of dependencies is shown in Diagram 4.1.

4.1.1 Deterministic Dependencies

An example for a deterministic dependency is Newton’s law of gravity in
physics. If a certain object, e.g. an apple is falling from a certain height ℎ to
the ground, then the law of gravity tells us exactly how long it takes until the
apple hits the ground. In principle this is only true, if we ignore any influences
coming from air resistance or any wind effects. But if we wanted to we can
include these effects also and we would obtain the exact time 𝑡 after which the
apple lands on the ground. Except for measuring error there would be no source
of uncertainty that would affect our resulting time 𝑡.
Other examples of deterministic dependencies are the motion of the planets
around the sun or some thermodynamic processes.
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Figure 4.1: Deterministic versus Stochastic Dependencies

4.1.2 Stochastic Dependencies
In contrast to the above mentioned deterministic dependencies, there is this
second type of the stochastic dependencies. An example of a stochastic depen-
dency is the decomposition of a phenotypic value into its genetic part and its
environmental part, using a genetic model. The difference between a stochas-
tic and a deterministic dependency is that in a system that is described using
stochastic dependencies, there are many sources of uncertainty. The different
sources of uncertainties have many different origins. First, for most quantitative
phenotypes, we do not know all the genes that are responsible for the expression
of a certain phenotypic value. Second, even if we knew all genes that cause a
certain phenotype, we still do not know all the post-translational processes that
are important for the observation of a certain phenotypic level. The same is true
for the environmental part. On the one hand it is impossible to observe and to
measure all environmental components and on the other hand, in most cases,
we do not know how the environmental components affect a certain phenotypic
value.

As a result, both the genetic part and the environmental part of a given phe-
notypic value are associated with very many different sources of uncertainty.
Fortunately, we have the tool of statistical modelling available. Statistical mod-
elling can incorporate sources of uncertainty and is able to make quantitative
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statements about different identifiable factors that affect a given quantity of
interest.

4.1.3 Statistical Model
A statistical model is an object that consists of four parts

1. response variable 𝑦
2. predictor variables 𝑥1, 𝑥2, … , 𝑥𝑘
3. residual term 𝑒
4. function 𝑚(𝑥)

In practice a statistical model must be viewed in a context of a given dataset.
This dataset consists of a set of records. In an ideal situation every record
contains one observation of the response variable and of one observation of
all the predictor variables. In the statistical model, the response variable 𝑦 is
expressed as a function (𝑚(𝑥)) of the predictor variables plus the residual term𝑒. For a given observation 𝑦𝑖, this can be expressed with the following formula𝑦𝑖 = 𝑚(𝑥𝑖) + 𝑒𝑖 (4.1)

where 𝑥𝑖 stands for the vector of the predictor variables 𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑘 belong-
ing to observation 𝑖. The class of available functions 𝑚(𝑥) that could be used in
a statistical model is infinitely large. Experiences have shown that restricting
the possible functions 𝑚(𝑥) to linear functions is not too restrictive for most
datasets and it does yield very valuable results. Hence in what follows, we are
just using linear functions for our statistical model.
Besides the choice of the class of functions 𝑚(𝑥) that will be used, there is also
the question whether all predictor variables 𝑥1, 𝑥2, … , 𝑥𝑘 are really required to
explain the response variable 𝑦. This question is answered by a technique that
is called model selection which will be explained in the following sections.

4.2 Selecting The Best Model
The aim of model selection is to find from a set of predictor variables those
which are relevant for the response variable. Relevance in this context means
that variability of the predictor is associated with variability of the response
variable. Furthermore this co-existence of variability of predictors and response
has to be quantifiable by a linear function, such as the one given in the model
(4.2).
In a practical data analysis setting, the dataset used as input to the analy-
sis may have many predictor variables. But it is not guaranteed that all of
them have an influence on the response variable. Because we want to model
the responses with a linear function of the predictor variables, every additional
predictor variable introduces an additional coefficient that must be estimated.
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Every estimated coefficient leads to more variability in the predicted response
values of a given model. Hence if a model should be used to predict new re-
sponses based on observed predictor values, the increased variability decreases
the predictive power.

We assume the following linear model

𝑦𝑖 = 𝑝∑𝑗=1 𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖 (𝑖 = 1, … , 𝑛) (4.2)

where 𝜖1, … , 𝜖𝑛 are identically independently distributed (i.i.d) with 𝐸(𝜖𝑖) = 0
and 𝑣𝑎𝑟(𝜖𝑖) = 𝜎2. The model selection problem can be stated by the following
question.

“Which of the predictor variables should be used in the linear
model?”

As already mentioned, it may be that not all of the 𝑝 predictor variables in-
cluded in the full model shown in (4.2) are relevant. Predictors that are not
relevant should not be included in a model because every coefficient of a predic-
tor must be estimated and leads to increased variability of the fitted model. In
case where this variability is caused by non-relevant predictor variables, the pre-
dictive power of the estimated model is lowered. As a consequence, we are often
looking for an optimal or the best model given the available input dataset.

4.3 Bias-Variance Trade-Off
What was explained above can be formalized a bit more. Suppose, we are
looking for optimizing the prediction

𝑞∑𝑟=1 ̂𝛽𝑗𝑟𝑥𝑖𝑗𝑟 (4.3)

which includes 𝑞 relevant predictor variables with indices taken from the vector𝑗 with 𝑗1, … , 𝑗𝑞 ∈ {1, … , 𝑝}. The average mean squared error of the prediction
in (4.3) can be computed as

𝑀𝑆𝐸 = 𝑛−1 𝑛∑𝑖=1 𝐸 [(𝑚(𝑥𝑖) − 𝑞∑𝑟=1 ̂𝛽𝑗𝑟𝑥𝑖𝑗𝑟)2]
= 𝑛−1 𝑛∑𝑖=1 (𝐸 [ 𝑞∑𝑟=1 ̂𝛽𝑗𝑟𝑥𝑖𝑗𝑟] − 𝑚(𝑥𝑖))2 + 𝑛−1 𝑛∑𝑖=1 𝑣𝑎𝑟( 𝑞∑𝑟=1 ̂𝛽𝑗𝑟𝑥𝑖𝑗𝑟) (4.4)
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where 𝑚(.) denotes the linear function in the true model with 𝑝 predictor vari-
ables. The systematic error 𝑛−1 ∑𝑛𝑖=1 (𝐸 [∑𝑞𝑟=1 ̂𝛽𝑗𝑟𝑥𝑖𝑗𝑟] − 𝑚(𝑥𝑖))2

is called
squared bias and this quantity is expected to decrease as the number of predic-
tors 𝑞 increases. But the variance term increases with the number of predictors𝑞. This fact is called the bias-variance trade-off which is present in many
applications in statistics. Now finding the best model corresponds to finding the
model that optimizes the bias-variance trade-off. This process is also referred
to as regularization.

4.4 Mallows 𝐶𝑝 Statistic
The mean square error in (4.4) is unknown because we do not know the magni-
tude of the bias. But MSE can be estimated.
Let us denote by 𝑆𝑆𝐸(ℳ) the residual sum of squares in the model ℳ. Unfor-
tunately 𝑆𝑆𝐸(ℳ) cannot be used to estimate 𝑀𝑆𝐸 because 𝑆𝑆𝐸(ℳ) becomes
smaller the more predictors are included in the model ℳ. The number of pre-
dictors in the model ℳ is also often referred to as the size of the model and is
written as |ℳ|.
For any (sub-) model ℳ which involves some (or all) of the predictor variables,
the mean square error (𝑀𝑆𝐸) can be estimated by𝑀𝑆𝐸 = 𝑛−1𝑆𝑆𝐸(ℳ) − �̂�2 + 2�̂�2|ℳ|/𝑛 (4.5)

where �̂�2 is the error variance estimate in the full model and 𝑆𝑆𝐸(ℳ) is the
residual sum of squares in the sub-model ℳ. Hence to find the best model, we
could search for the sub-model ℳ that minimizes 𝑀𝑆𝐸. Because �̂�2 and 𝑛 are
constants with respect to sub-models ℳ, we can also consider the well-known𝐶𝑝 statistic

𝐶𝑝(ℳ) = 𝑆𝑆𝐸(ℳ)�̂�2 − 𝑛 + 2|ℳ| (4.6)

and search for the sub-model ℳ minimizing the 𝐶𝑝 statistic.

4.5 Searching For The Best Model With Re-
spect To 𝐶𝑝

If the full model has 𝑝 predictor variables, there are 2𝑝−1 sub-models (every pre-
dictor can be considered in a sub-model or not. The empty sub-model without
any predictors is excluded here).
Therefore, an exhaustive search for the sub-model ℳ minimizing 𝐶𝑝 is only
feasible if 𝑝 is less than 16 which results in 216 − 1 = 6.5535 × 104 sub-models
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to be tested. If 𝑝 is much larger, we can proceed with one of the two following
stepwise algorithms.

4.5.1 Forward Selection
1. Start with the smallest model ℳ0 with only a general mean as the current

model
2. Include the predictor variable to the current model which reduces the

residual sum of squares the most.
3. Continue with step 2 until all predictor variables have been chosen or until

a large number of predictor variables have been selected. This produces a
sequence of sub-models ℳ0 ⊆ ℳ1 ⊆ ℳ2 ⊆ …

4. Choose the model in the sequence ℳ0 ⊆ ℳ1 ⊆ ℳ2 ⊆ … with the smallest𝐶𝑝 value.

4.5.2 Backward Selection
1. Start with the full model ℳ0 as the current model. The full model is the

model including all 𝑝 predictor variables
2. Exclude the predictor variable from the current model which increases the

residual sum of squares the least.
3. Continue with step 2 until all predictor values have been deleted (or a

large number of variables have been deleted). This produces a sequence
of sub-models ℳ0 ⊇ ℳ1 ⊇ ℳ2 ⊇ ….

4. Choose the model in the sequence ℳ0 ⊇ ℳ1 ⊇ ℳ2 ⊇ … which has the
smallest 𝐶𝑝 value.

4.5.3 Considerations
Backward selection (4.5.2) typically leads to better results than forward selec-
tion, but it is computationally more expensive. But in the case where 𝑝 ≥ 𝑛,
the full model cannot be fitted and backward selection is not possible. Forward
selection might then be a possibility, but alternative estimation procedures such
as LASSO might be a better solution.

4.6 Alternative Model Selection Criteria
Other popular criteria to estimate the predictive potential of an estimated model
are Akaike’w information criterion (AIC) and the Bayesian information crite-
rion (BIC). Both of them are based on the likelihood and require therefore
assumptions about the distribution of the data.

The goodness of the fit of the linear model for explaining the data is quantified
by the coefficient of determination which is typically abbreviated by 𝑅2 where



4.6. ALTERNATIVE MODEL SELECTION CRITERIA 33

𝑅2 = || ̂𝑦 − ̄𝑦||2||𝑦 − ̄𝑦||2 (4.7)

where || ̂𝑦 − ̄𝑦||2 are the sum of squares explained by the model and ||𝑦 − ̄𝑦||2
stands for the total sum of squares around the global mean ̄𝑦. The coefficient of
determination 𝑅2 is always increasing the more predictor variables are included
in the model. This behavior can be corrected as proposed in [Yin and Fan, 2001].
This correction includes the number of predictor variables an hence reduces the
favoring of the full model. The result of the correction is the adjusted 𝑅2 which
is computed as

𝑅2𝑎𝑑𝑗 = 1 − (1 − 𝑅2) 𝑛 − 1𝑛 − 𝑝 − 1 (4.8)

where 𝑅2 is the unadjusted coefficient of determination given by (4.7), 𝑛 stands
for the number of observations and 𝑝 is the number of predictor variables. The
formula in (4.8) holds for sub-models that include an intercept term. For sub-
models without intercept, the −1 in both numerator and the denominator of
(4.8) can be dropped.
The adjusted coefficient of determination (𝑅2𝑎𝑑𝑗) allows to assess the goodness
of fit of a model. That assessment considers the number of predictor variables
included in the model.
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