
Chapter 6

Prediction Of Breeding
Values

The breeding value 𝑢𝑖 of animal 𝑖 cannot be observed or measured. It has to be
estimated from phenotypic observations using the genetic model shown in (6.1)
and in .

𝑦𝑖 = 𝜇 + 𝑢𝑖 + 𝑑𝑖 + 𝑖𝑖 + 𝑒𝑖 (6.1)

where 𝑦𝑖 is the observation of animal 𝑖, 𝜇 corresponds to a general population
mean of the observed phenotypic values, 𝑢𝑖 is the breeding value of animal 𝑖,𝑑𝑖 is the dominance deviation and 𝑖𝑖 the epistasis effect. The random error
term is symbolized with 𝑒𝑖. For the prediction of breeding values, dominance
deviations and epistasis effects are not considered to be important. Therefore
they are ignored. This leads to a simpler model shown in (6.2).

𝑦𝑖 = 𝜇 + 𝑢𝑖 + 𝑒𝑖 (6.2)

The expected values and the variance-covariance matrix of the model shown in
(6.2) are specified as

𝐸 ⎡⎢⎣ 𝑦𝑖𝑢𝑖𝑒𝑖 ⎤⎥⎦ = ⎡⎢⎣ 𝜇00 ⎤⎥⎦𝑣𝑎𝑟 ⎡⎢⎣ 𝑦𝑖𝑢𝑖𝑒𝑖 ⎤⎥⎦ = ⎡⎢⎣ 𝜎2𝑦 𝜎2𝑢 𝜎2𝑒𝜎2𝑢 𝜎2𝑢 0𝜎2𝑒 0 𝜎2𝑒 ⎤⎥⎦ (6.3)
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6.1 Genetic Properties of Predicted Breeding
Values

As already mentioned, breeding values cannot be observed but must be es-
timated or predicted from phenotypic data. Prediction or estimation of an
unknown parameter using statistical modelling expresses the predicted or esti-
mated quantity as a mathematical function of the observed data. The question
is how this function should look like and what properties the predicted breed-
ing values should fulfill. In the case of livestock breeding, one objective for the
predicted breeding values is that the response to selection is maximized.

[Henderson, 1963] found that the improvement of an offspring generation com-
pared to the parent generation can be maximized when parents are selected
based on the conditional expected value (𝐸(𝑢|𝑦)) of the true breeding value 𝑢
given the observed phenotypic values 𝑦. Under the assumption of multivariate
normality for 𝑢 and 𝑦, the conditional expected value (𝐸(𝑢|𝑦)) can be written
as

𝐸(𝑢|𝑦) = 𝐸(𝑢) + 𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ (𝑦 − 𝐸(𝑦)) (6.4)

Applying the expression in (6.4) for the prediction of breeding values, we can use
the property that the breeding value was defined as deviation from the general
mean which means that the expected value 𝐸(𝑢) of the true breeding value 𝑢 is𝐸(𝑢) = 0.

𝑢̂ = 𝐸(𝑢|𝑦) = 0 + 𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ (𝑦 − 𝐸(𝑦))= 𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ (𝑦 − 𝜇) (6.5)

Equation (6.5) shows that the predicted breeding value consists of two parts.

1. (𝑦 − 𝜇) shows that the observed phenotypic values are corrected for the
fixed non-genetic environmental effects represented by 𝜇.

2. 𝑐𝑜𝑣(𝑢, 𝑦𝑇 )∗𝑣𝑎𝑟(𝑦)−1 corresponds to a weighting factor with which the cor-
rected phenotypic values are multiplied. The weighting factor depends on
population parameters such as the heritability and the genetic correlation.

Based on the definition of the predicted breeding value 𝑢̂ given in (6.5), the
following properties can be derived.

6.1.1 Unbiasedness
The expected value (𝐸(𝑢̂)) of the predicted breeding value 𝑢̂ can be computed
as:
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𝐸(𝑢̂) = 𝐸(𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ (𝑦 − 𝐸(𝑦)))= 𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ 𝐸(𝑦 − 𝐸(𝑦))= 𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ (𝐸(𝑦) − 𝐸(𝑦)) = 0 (6.6)

Because we have already specified that 𝐸(𝑢) = 0, it follows that 𝐸(𝑢̂) = 𝐸(𝑢) =0. This means that 𝑢̂ is an unbiased estimator of 𝑢.

6.1.2 Variance
The variance 𝑣𝑎𝑟(𝑢̂) is the same as the covariance 𝑐𝑜𝑣(𝑢, 𝑢̂) between the true
and predicted breeding value.

𝑣𝑎𝑟(𝑢̂) = 𝑣𝑎𝑟(𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ (𝑦 − 𝐸(𝑦)))= 𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ 𝑣𝑎𝑟(𝑦 − 𝐸(𝑦)) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ 𝑐𝑜𝑣(𝑦, 𝑢𝑇 )= 𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ 𝑐𝑜𝑣(𝑦, 𝑢𝑇 )𝑐𝑜𝑣(𝑢, 𝑢̂) = 𝑐𝑜𝑣(𝑢, (𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ (𝑦 − 𝐸(𝑦)))𝑇 )= 𝑐𝑜𝑣(𝑢, (𝑦 − 𝐸(𝑦))𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ 𝑐𝑜𝑣(𝑦, 𝑢𝑇 )= 𝑐𝑜𝑣(𝑢, 𝑦𝑇 ) ∗ 𝑣𝑎𝑟(𝑦)−1 ∗ 𝑐𝑜𝑣(𝑦, 𝑢𝑇 ) = 𝑣𝑎𝑟(𝑢̂) (6.7)

6.1.3 Accuracy
The accuracy of a predicted breeding value is measured by the correlation 𝑟𝑢,𝑢̂
between true and estimated breeding value. This correlation is computed as

𝑟𝑢,𝑢̂ = 𝑐𝑜𝑣(𝑢, 𝑢̂)√𝑣𝑎𝑟(𝑢) ∗ 𝑣𝑎𝑟(𝑢̂) = √𝑣𝑎𝑟(𝑢̂)𝑣𝑎𝑟(𝑢) (6.8)

Alternatively, the reliability 𝐵 which corresponds to the square of the accuracy
is often specified when predicted breeding values are published.

6.1.4 Conditional Density
In some cases, e.g., for specifying confidence intervals of true breeding values,
it might be interesting to have a look at the conditional density 𝑓(𝑢|𝑢̂). This
density is a multivariate normal density with expected value 𝐸(𝑢|𝑢̂) and variance𝑣𝑎𝑟(𝑢|𝑢̂). These values can be computed based on the theory of conditional
multivariate normal densities.
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𝐸(𝑢|𝑢̂) = 𝐸(𝑢) + 𝑐𝑜𝑣(𝑢, 𝑢̂𝑇 ) ∗ 𝑣𝑎𝑟(𝑢̂)−1 ∗ (𝑢̂ − 𝐸(𝑢̂)) = 𝑢̂𝑣𝑎𝑟(𝑢|𝑢̂) = 𝑣𝑎𝑟(𝑢) − 𝑐𝑜𝑣(𝑢, 𝑢̂𝑇 ) ∗ 𝑣𝑎𝑟(𝑢̂)−1 ∗ 𝑐𝑜𝑣(𝑢̂, 𝑢𝑇 )= 𝑣𝑎𝑟(𝑢) ∗ [1 − 𝑐𝑜𝑣(𝑢, 𝑢̂𝑇 )2𝑣𝑎𝑟(𝑢) ∗ 𝑣𝑎𝑟(𝑢̂)]= 𝑣𝑎𝑟(𝑢) ∗ [1 − 𝑟2𝑢,𝑢̂] (6.9)

6.1.5 Prediction Error Variance (PEV)
Because every prediction is associated with an error, the same is true for the pre-
dicted breeding values 𝑢̂. The variability of the error for the predicted breeding
values are quantified by the prediction error variance (PEV). This is computed
as

𝑣𝑎𝑟(𝑢 − 𝑢̂) = 𝑣𝑎𝑟(𝑢) − 2𝑐𝑜𝑣(𝑢, 𝑢̂) + 𝑣𝑎𝑟(𝑢̂) = 𝑣𝑎𝑟(𝑢) − 𝑣𝑎𝑟(𝑢̂)= 𝑣𝑎𝑟(𝑢) ∗ [1 − 𝑣𝑎𝑟(𝑢̂)𝑣𝑎𝑟(𝑢)]= 𝑣𝑎𝑟(𝑢) ∗ [1 − 𝑟2𝑢,𝑢̂] (6.10)

As shown in subsection 6.1.6, the standard error of prediction (SEP) can be a
useful quantity. SEP corresponds just to the square root of PEV. Hence

𝑆𝐸𝑃(𝑢̂) = √𝑣𝑎𝑟(𝑢 − 𝑢̂) = √𝑣𝑎𝑟(𝑢) ∗ [1 − 𝑟2𝑢,𝑢̂]= √1 − 𝑟2𝑢,𝑢̂ ∗ 𝜎𝑢 (6.11)

with 𝜎𝑢 = √𝑣𝑎𝑟(𝑢).
6.1.6 Confidence Intervals
The confidence interval (CI) must always be associated with a certain error-
level which is usually denoted by 𝛼. Typical values of 𝛼 might be 0.05 or 0.01.
For 𝛼 = 0.05, we can specify the 95%-confidence interval. Within this interval
around the expected value, the enclosed surface by the density curve corresponds
to 0.95.
In the context of predicted breeding values, the confidence interval for a specified
error-level 𝛼 of the true breeding value 𝑢 given a predicted breeding value 𝑢̂
might be of interest for certain quantification of risks when using parents with
predicted breeding values with different accuracy values.
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To get the desired confidence interval, we have a look at the conditional density
described in 6.1.4. An example of such a density is shown in the diagram below.

−2 0 2
x

Figure 6.1: Conditional Density with Confidence Interval

When comparing (6.9) and (6.11), it follows that the standard deviation of the
conditional density that determines the CI is given by SEP.
The confidence interval CI at a given error-level (as in Figure 6.1 we assume𝛼 = 0.05) is defined by the lower limit 𝑙 and the upper limit 𝑚. From the plot
in Figure 6.1, the limits are defined as

𝑙 = 𝑢̂ − 𝑧 ∗ 𝑆𝐸𝑃𝑚 = 𝑢̂ + 𝑧 ∗ 𝑆𝐸𝑃 (6.12)
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where 𝑧 is the quantile value such that the surface under the curve corresponds
to 1 − 𝛼. For 𝛼 = 0.05, the value of 𝑧 corresponds to 1.96. The values for 𝑧 are
obtained via the R-function qnorm().

6.2 Best Linear Unbiased Prediction
The abbreviation BLUP stands for Best Linear Unbiased Prediction and sum-
marizes statistical properties of a certain class of predictors. [Henderson, 1975]
showed that the predicted breeding value as defined in (6.5) has the BLUP prop-
erties. BLUP-based procedures are the de-facto standard methods to predict
breeding values. These procedures use linear mixed effects models to simulta-
neously estimate fixed effects and predict breeding values. Linear models that
contain besides the random error other random effects are called linear mixed
effects model. The classification into fixed and random effects is not based on
a universally accepted definition. For some effects with distinct and a finite
number of classes it is easy to classify them as fixed effects. On the other hand
breeding values of animals are always modeled as random effects.

6.3 The Linear Mixed Effects Model
In general the linear mixed effects model has the following structure𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒 (6.13)

where 𝑦 vector of length 𝑛 with observations𝑏 vector of length 𝑝 with fixed effects𝑢 vector of length 𝑞 with random breeding values𝑒 vector of length 𝑛 with random error terms𝑋 𝑛 × 𝑝 incidence matrix linking fixed effects to observations𝑍 𝑛 × 𝑞 incidence matrix linking random breeding values to observations
With a linear mixed effects model, we also have to specify the expected values
and the variance-covariance matrices for the random components in the model.
We start with the expected values in vector-notation.

𝐸 ⎡⎢⎣ 𝑦𝑢𝑒 ⎤⎥⎦ = ⎡⎢⎣ 𝑋𝑏00 ⎤⎥⎦ (6.14)

The variance-covariance matrices can be written as

𝑣𝑎𝑟 ⎡⎢⎣ 𝑦𝑢𝑒 ⎤⎥⎦ = ⎡⎢⎣ 𝑍𝐺𝑍𝑇 + 𝑅 𝑍𝐺 0𝐺𝑍𝑇 𝐺 00 0 𝑅 ⎤⎥⎦ (6.15)
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6.4 Solutions To The Linear Mixed Effects
Model

In the linear mixed effects model (6.13) the vectors 𝑏 and 𝑢 are unknown and are
of primary interest when using the model in livestock breeding applications. Ap-
plying the BLUP properties to the model (6.13) leads to the following solutions
for 𝑏 and 𝑢. 𝑢̂ = 𝐺𝑍𝑇 𝑉 −1(𝑦 − 𝑋 ̂𝑏) (6.16)

where 𝑉 stands for the variance covariance matrix 𝑣𝑎𝑟(𝑦) of the phenotypic
observations. From (6.15), we can see that 𝑉 can be computed as 𝑉 = 𝑍𝐺𝑍𝑇 +𝑅. The vector ̂𝑏 stands for the best linear unbiased estimate of the fixed effects𝑏 which are given by ̂𝑏 = (𝑋𝑇 𝑉 −1𝑋)−𝑋𝑇 𝑉 −1𝑦 (6.17)

where (𝑋𝑇 𝑉 −1𝑋)− stands for a generalized inverse of (𝑋𝑇 𝑉 −1𝑋).
Both solutions in (6.16) and (6.17) contain the matrix 𝑉 −1 which has the di-
mensions 𝑛 × 𝑛 where 𝑛 stands for the number of observations. In practical
breeding programs the number of observations is frequently in the order of 106
which makes the computation of 𝑉 −1 practically impossible. CR Henderson and
his team found that the solution of the so-called mixed model equations lead to
equivalent solutions for ̂𝑏 and 𝑢̂. The mixed model equations are given by

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑍𝑍𝑇 𝑅−1𝑋 𝑍𝑇 𝑅−1𝑍 + 𝐺−1 ] [ ̂𝑏𝑢̂ ] = [ 𝑋𝑇 𝑅−1𝑦𝑍𝑇 𝑅−1𝑦 ] (6.18)

The application of the linear mixed effects model (6.13) in Livestock Breeding
have led to two specially named models depending on what was used as random
effects. These models are

1. sire model: for each observation the influence of the animals sire was
used as random effect.

2. animal model: the influence of the genetic component of each animal
was used as random effect.

6.5 Sire Model
In the sire model the effect of the sire is taken as a random effect. This leads
to the following model 𝑦 = 𝑋𝑏 + 𝑍𝑠 + 𝑒 (6.19)
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where 𝑠 is a vector of length 𝑞𝑠 with all sire effects. All other components are the
same as specified for the model (6.13). The variance-covariance matrix 𝑣𝑎𝑟(𝑠)
of all sire effects corresponds to𝑣𝑎𝑟(𝑠) = 𝐴𝑠 ∗ 𝜎2𝑠 (6.20)

where 𝐴𝑠 is the numerator relationship matrix only considering relations on the
male side of the pedigree. The variance component 𝜎2𝑠 is obtained from the
variance components estimation using a sire model and it corresponds to 0.25𝜎2𝑎
where 𝜎2𝑎 is the genetic additive variance.

The sire model was developed for livestock populations with large half-sib fam-
ilies where a given sire has a large number of offspring. As a result all sires
get predicted breeding values. All female animals are not considered in the
evaluation and do not get predicted breeding values.

The usage of sire models for predicting breeding values was mainly at the be-
ginning of the introduction of the BLUP methodology. It was motivated by the
lower requirements of computing power.

6.6 Animal Model
The so-called animal model uses the breeding value of each animal as a random
effect. In matrix-vector notation the animal model has the following structure.𝑦 = 𝑋𝑏 + 𝑍𝑎 + 𝑒 (6.21)

where 𝑎 is a vector of length 𝑞𝑎 containing the breeding values of all animals
in the pedigree. All other components are the same as specified for the model
(6.13). The variance-covariance matrix 𝑣𝑎𝑟(𝑎) of the breeding values is defined
as 𝑣𝑎𝑟(𝑎) = 𝐴𝜎2𝑎 (6.22)

where 𝐴 is the numerator relationship matrix containing all identity by descent
relationships in a pedigree. The matrix 𝐴 is symmetric. The off-diagonal el-
ements (𝐴)𝑖𝑗 in row 𝑖 and column 𝑗 contain the probability of animals 𝑖 and𝑗 sharing alleles that are identical by descent. Identity by descent of two al-
leles means that two alleles can be traced back in the pedigree to a common
ancestor. As an example the value of (𝐴)𝑖𝑗 between two half-sibs 𝑖 and 𝑗 is 1/4
and between two full-sibs it is 1/2. The diagonal elements (𝐴)𝑖𝑖 of matrix 𝐴
corresponds to 1 + 𝐹𝑖 where 𝐹𝑖 is the inbreeding coefficient of animal 𝑖. The
inbreeding coefficient corresponds to 1/2 of the relationship coefficient between
parents 𝑠 and 𝑑 of 𝑖.
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6.7 Genomic BLUP
With the rapid increase of animals with genotypic information in the form of
SNP-genotypes, this information can be used to predict genomic breeding values.
BLUP-based methods can be used to predict genomic breeding values based on
genomic information. The genomic BLUP models can have two different forms.

1. marker-effect models where each SNP-locus is taken as a random effect.
2. breeding value based models where genomic breeding values are included

as random effects.

As long as the number of genotyped animals is lower than the number of geno-
types determined per animal, then model (2) has advantages over model (1)
with respect to requirements of computing power. But as the number of geno-
typed animals increases very rapidly, model (1) might be favorable over model
(2).

At this point it is important to note that whether we use genomic information
or not, the goal of the prediction of breeding values remains still the same. We
want to get a prediction of the genetic potential of each animal. This prediction
must be as accurate as possible. The realized values of the predictions are used
to rank the animals. Based on these rankings the selection decisions are taken
to determine the parents of the future generations of livestock animals.

In GBLUP genomic breeding values are directly predicted by including the
genomic breeding values 𝑢 which corresponds to the sum of all SNP-allele effects
directly as a random effect in the model.

𝑦 = 𝑋𝛽 + 𝑊𝑢 + 𝑒 (6.23)

where 𝑊 is the design matrix linking genomic breeding values to observations.
The mixed model equations are the defined as

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑊𝑊 𝑇 𝑅−1𝑋 𝑊 𝑇 𝑅−1𝑊 + 𝐺−1 ∗ 𝜎−2𝑢 ] [ ̂𝛽𝑢̂ ] = [ 𝑋𝑇 𝑅−1𝑦𝑊 𝑇 𝑅−1𝑦 ] (6.24)

where 𝐺 is defined as the genomic relationship matrix and 𝜎2𝑢 corresponds to the
total genetic variance explained by all SNP-loci. We can see that the GBLUP
model looks very similar to the animal model, except that the covariances be-
tween random effects in the animal model are based on the numerator rela-
tionship matrix and in GBLUP they are modeled via the genomic relationship
matrix 𝐺. This means in the animal model the covariance between random
breeding values is based on the concept of common ancestry and identity-by-
descent. This is replaced in GBLUP by the concept of sharing the same alleles
based on identity-by-state which is assumed to be the cause of the covariance
between random genomic breeding values.
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6.8 How Does GBLUP Work
The genomic relationship matrix 𝐺 allows to predict genomic breeding values
for animals with SNP-Genotypes without any observation in the dataset. This
fact is the basis of the large benefit of genomic selection. As soon as a young
animal is born, its SNP genotypes can be determined and a genomic breeding
value can be predicted. This genomic breeding value is much more accurate
then the traditional breeding value based only on ancestral information.
The breeding value model is a linear mixed effects model. The solution for the
unknown parameters can be obtained by solving the mixed model equations
shown in (6.25). In this form the Inverse 𝐺−1 of 𝐺 and the vector ̂𝑔 of predicted
genotypic breeding values are split into one part corresponding to the animals
with observations and a second part for the animals without phenotypic infor-
mation.

⎡⎢⎣𝑋𝑇 𝑋 𝑋𝑇 𝑍 0𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝐺(11) 𝐺(12)0 𝐺(21) 𝐺(22)⎤⎥⎦ ⎡⎢⎣ ̂𝑏̂𝑔1̂𝑔2⎤⎥⎦ = ⎡⎢⎣𝑋𝑇 𝑦𝑍𝑇 𝑦0 ⎤⎥⎦ (6.25)

The matrix 𝐺(11) denotes the part of 𝐺−1 corresponding to the animals with
phenotypic observations. Similarly, 𝐺(22) stands for the part of the animals
without genotypic observations. The matrices 𝐺(12) and 𝐺(21) are the parts of𝐺−1 which link the two groups of animals. The same partitioning holds for
the vector of predicted breeding values. The vector ̂𝑔1 contains the predicted
breeding values for the animals with observations and the vector ̂𝑔2 contains the
predicted breeding values of all animals without phenotypic observations.
Based on the last line of (6.25) the predicted breeding values ̂𝑔2 of all animals
without phenotypic observations can be computed from the predicted breeding
values ̂𝑔1 from the animals with observations.̂𝑔2 = − (𝐺22)−1 𝐺21 ̂𝑔1 (6.26)

Equation (6.26) is referred to as genomic regression of predicted breeding values
of animals without observation on the predicted genomic breeding values of
animals with observations. The genomic regression is responsible why genomic
selection has lead to a change in paradigmn in cattle breeding with a dramatic
reduction of the generation interval in the breeding program. In pig breeding
genomic breeding values based on equation (6.26) are used to make a selection
decision between litter mates and thereby determine which of the piglets are
kept and which are sent to the testing station.
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