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Why Statistical Modelling?
Some people believe, they do not need statistics. For them it is
enough to look at a diagram
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Statistical Modelling Because . . .

Two types of dependencies between physical quantities

1. deterministic
2. stochastic
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Statistical Model

▶ stochastic systems contains many sources of uncertainty
▶ statistical models can handle uncertainty
▶ components of a statistical model

▶ response variable y
▶ predictor variables x1, x2, . . . , xk
▶ error term e
▶ function m(x)



How Does A Statistical Model Work?

▶ predictor variables x1, x2, . . . , xk are transformed by function
m(x) to explain the response variable y

▶ uncertainty is captured by error term.
▶ as a formula, for observation i

yi = m(xi) + ei



Which function m(x)?

▶ class of functions that can be used as m(x) is infinitely large
▶ restrict to linear functions of predictor variables



Which predictor variables?

▶ Question, about which predictor variables to use is answered by
model selection



Why Model Selection

▶ Many predictor variables are available
▶ Are all of them relevant?
▶ What is the meaning of relevant in this context?



Example Dataset

Animal Breast Circumference Body Weight RandPred

1 176 471 179
2 177 463 177
3 178 481 176
4 179 470 182
5 179 496 182
6 180 491 182
7 181 518 181
8 182 511 178
9 183 510 178

10 184 541 180
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Fitting a Regression Model

##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.807 -19.661 -5.779 18.314 44.879
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 164.436 699.952 0.235 0.820
## RandPred 1.843 3.899 0.473 0.649
##
## Residual standard error: 26.01 on 8 degrees of freedom
## Multiple R-squared: 0.02716, Adjusted R-squared: -0.09445
## F-statistic: 0.2233 on 1 and 8 DF, p-value: 0.6491



Fitting a Regression Model II

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287



Multiple Regression

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference` + RandPred,
## data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.4097 -6.1693 0.9099 9.1225 12.7287
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1126.320 391.528 -2.877 0.023762 *
## `Breast Circumference` 8.625 1.529 5.642 0.000781 ***
## RandPred 0.389 1.789 0.217 0.834033
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.81 on 7 degrees of freedom
## Multiple R-squared: 0.8246, Adjusted R-squared: 0.7745
## F-statistic: 16.46 on 2 and 7 DF, p-value: 0.00226



Which model is better?

Why not taking all predictors?

▶ Additional parameters must be estimated from data
▶ Predictive power decreased with too many predictors (cannot

be shown for this data set, because too few data points)
▶ Bias-variance trade-off



Bias-variance trade-off

▶ Assume, we are looking for optimum prediction

si =
q∑

r=1
β̂jr xijr

with q relevant predictor variables

▶ Average mean squared error of prediction si

MSE = n−1
n∑

i=1
E

[
(m(xi) − si)2

]
where m(.) denotes the linear function of the unknown true model.



Bias-variance trade-off II

▶ MSE can be split into two parts

MSE = n−1
n∑

i=1
(E [si ] − m(xi))2 + n−1

n∑
i=1

var(si)

where n−1 ∑n
i=1 (E [si ] − m(xi))2 is called the squared bias

▶ Increasing q leads to reduced bias but increased variance
(var(si))

▶ Hence, find si such that MSE is minimal
▶ Problem: cannot compute MSE because m(.) is not known

→ estimate MSE



Mallows Cp statistic

▶ For a given model M, SSE (M) stands for the residual sum of
squares.

▶ MSE can be estimated as

M̂SE = n−1SSE (M) − σ̂2 + 2σ̂2|M|/n

where σ̂2 is the estimate of the error variance of the full model,
SSE (M) is the residual sum of squares of the model M, n is the
number of observations and |M| stands for the number of
predictors in M

Cp(M) = SSE (M)
σ̂2 − n + 2|M|



Searching The Best Model

▶ Exhaustive search over all sub-models might be too expensive
▶ For p predictors there are 2p − 1 sub-models
▶ With p = 16, we get 6.5535 × 104 sub-models

→ step-wise approaches



Forward Selection

1. Start with smallest sub-model M0 as current model
2. Include predictor that reduces SSE the most to current model
3. Repeat step 2 until all predictors are chosen

→ results in sequence M0 ⊆ M1 ⊆ M2 ⊆ . . . of sub-models

4. Out of sequence of sub-models choose the one with minimal Cp



Backward Selection

1. Start with full model M0 as the current model
2. Exclude predictor variable that increases SSE the least from

current model
3. Repeat step 2 until all predictors are excluded (except for

intercept)

→ results in sequence M0 ⊇ M1 ⊇ M2 ⊇ . . . of sub-models

4. Out of sequence choose the one with minimal Cp



Considerations

▶ Whenever possible, choose backward selection, because it
leads to better results

▶ If p ≥ n, only forward is possible, but then consider LASSO



Alternative Selection Criteria

▶ AIC or BIC, requires distributional assumptions.
▶ AIC is implemented in MASS::stepAIC()
▶ Adjusted R2 is a measure of goodness of fit, but sometimes is

not conclusive when comparing two models
▶ Try in exercise



Genetic Variation

▶ Requirement for trait to be considered in breeding goal
▶ Breeding means improvement of next generation via selection

and mating
▶ Only genetic (additive) components are passed to offspring
▶ Selection should be based on genetic component of trait
▶ Selection only possible with genetic variation

→ genetic variation indicates how good characteristics are passed
from parents to offspring

→ measured by heritability h2 = σ2
a

σ2
p



Two Traits
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Problems

▶ Genetic components cannot be observed or measured
▶ Must be estimated from data
▶ Data are mostly phenotypic

→ topic of variance components estimation

▶ Model based, that means connection between phenotypic
measure and genetic component are based on certain model

p = g + e

with cov(g , e) = 0

▶ Goal: separate variation due to g (σ2
a) from phenotypic

variation



Example of Variance Components Separation

▶ Estimation of repeatability
▶ Given repeated measurements of same trait at the same animal
▶ Repeatability means variation of measurements at the same

animal is smaller than variation between measurements at
different animals
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Model

yij = µ + ti + ϵij

where
yij measurement j of animal i
µ expected value of y
ti deviation of yij from µ attributed to animal i
ϵij measurement error



Estimation Of Variance Components

▶ E (ti) = 0

▶ σ2
t = E (t2

i ): variance component of total variance (σ2
y ) which

can be attributed to the t-effects

▶ E (ϵij) = 0

▶ σ2
ϵ = E (ϵ2

ij): variance component attributed to ϵ-effects

▶ σ2
y = σ2

t + σ2
ϵ

▶ Repeatability w defined as:

w = σ2
t

σ2
t + σ2

ϵ

→ estimate of σ2
t needed



Analysis Of Variance (ANOVA)

Effect df Sum Sq Mean Sq E (Mean Sq)
Bull (t) r − 1 SSQ(t) SSQ(t)/(r − 1) σ2

ϵ + n ∗ σ2
t

Residual (ϵ) N − r SSQ(ϵ) SSQ(ϵ)/(N − r) σ2
ϵ

where

SSQ(t) =

1
n

r∑
i=1

 n∑
j=1

yij

2
 −

 r∑
i=1

n∑
j=1

yij

2

/N

SSQ(ϵ) =
r∑

i=1

n∑
j=1

y2
ij −

1
n

r∑
i=1

 n∑
j=1

yij

2




Zahlenbeispiel

## Df Sum Sq Mean Sq F value Pr(>F)
## Bull 9 286.7 31.85 13.85 8.74e-07 ***
## Residuals 20 46.0 2.30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Setting expected values of Mean Sq equal to estimates of variance
components

σ̂2
ϵ = 2.3 and σ̂2

t = 31.85 − 2.3
3 = 9.85

Repeatability

ŵ = σ̂2
t

σ̂2
t + σ̂2

ϵ

= 0.81



Same Strategy for Sire Model

▶ Sire model is a mixed linear effects model with sire effects s as
random components

y = Xb + Zs + e

▶ In case where sires are not related, $var(s) = I ∗ σ2
s

▶ From σ2
s , we get genetic additive variance as σ2

a = 4 ∗ σ2
s



ANOVA

Effect Degrees of Freedom Sum Sq Mean Sq E(Mean Sq)
Sire (s|b) r − 1 SSQ(s|b) SSQ(s|b)/(r − 1) σ2

e + k ∗ σ2
s

Residual (e) N − r SSQ(e) SSQ(e)/(N − r) σ2
e

with
k = 1

r − 1

[
N −

∑r
i=1 n2

i
N

]



Maximum Likelihood (ML)

▶ Likelihood

L(θ) = f (y |θ)

▶ Normal distribution

L(θ) = (2π)−1/2nσ−n|H|−1/2∗exp
{

− 1
2σ2 (y − Xb)T H−1(y − Xb)

}

with var(y) = H ∗ σ2 and θT =
[

b σ2
]



Maximization of Likelihood

▶ Set λ = logL
▶ Compute partial derivatives of λ with respect to all unknowns

∂λ

∂b

∂λ

∂σ2

▶ Set partial derivatives to 0 and solve for unknowns
▶ Use solutions as estimates



Restricted Maximum Likelihood (REML)

▶ Problem with ML: estimate of σ2 depends on b → undesirable
▶ Do transformations Sy and Qy

(i) The matrix S has rank n − t and the matrix Q has rank t
(ii) The result of the two transformations are independent, that

means cov(Sy , Qy) = 0 which is met when SHQT = 0
(iii) The matrix S is chosen such that E (Sy) = 0 which means

SX = 0
(iv) The matrix QX is of rank t, so that every linear function of the

elements of Qy estimate a linear function of b.



REML II

▶ From (i) and (ii) it follows that the likelihood L of y is the
product of the likelihoods of Sy (L∗) and Qy (L∗∗) that means

λ = λ∗ + λ∗∗

▶ Variance components are estimated from λ∗ which will then be
independent of b



Bayesian Estimation

▶ Proposed already in the 80’s
▶ Full implementation only in 1993
▶ Requirements:

▶ cheap computing and
▶ good pseudo-random number generators

▶ Bayesian estimation is based on conditional posterior
distribution of unknowns given the knowns

▶ Conditional posterior distribution is computed from prior
distribution of unknowns times the likelihood



Model

▶ Univariate Gaussian linear mixed model

y = Xb + Zu + e

where
y vector of observations (length n)
b vector of fixed effects (length p)
u vector of random breeding values

(length q)
e vector of random residuals (length n)
X n×p design matrix linking fixed effects

to observations
Z n × q design matrix linking breeding

values to observations



Likelihood

▶ Data generating distribution

y |b, u, σ2
e ∼ N (Xb + Zu, I ∗ σ2

e )

where I is a n × n identity matrix and σ2
e is the variance of the

random residuals.



Priors

▶ Prior distributions must be specified for all unknowns
▶ Unknowns in our example are: b, u, σ2

e and σ2
u

▶ Prior distribution for
▶ b is flat, i.e. p(b) ∝ c
▶ u Normal distribution as u|G , σ2

u ∼ N(0, G ∗ σ2
u)

▶ σ2
e scaled inverse χ2:

p(σ2
e |νe , s2

e ) ∝ (σ2
e )−νe/2−1exp(− 1

2 νes2
e /σ2

e )
▶ σ2

u : p(σ2
u|νu, s2

u ) ∝ (σ2
u)−νu/2−1exp(− 1

2 νus2
u/σ2

u)
▶ νe , νs , s2

e and s2
u are called hyper-parameters and must be

determined



Additional Terms

▶ Let

θT = (bT , uT ) = (θ1, θ2, . . . , θN)

θ−i = (θ1, θ2, . . . , θi−1, θi+1, . . . , θN)

▶ Further, let

sT = (s2
u , s2

e )

and

νT = (νu, νe)



Joint Posterior Density

The joint posterior distribution can be written as

p(θ, σ2
u, σ2

e |y , s, ν) ∝ p(θ) ∗ p(σ2
u|νu, s2

u) ∗ p(σ2
e |νe , s2

e ) ∗ p(y |θ, σ2
e )



Fully Conditional Posterior Densities of θ

▶ Density of every single unknown component when setting all
other components as known

θi |y , θ−i , σ2
u, σ2

e , s, ν ∼ N (θ̃i , ṽi)

where θ̃i = (ri −
∑N

j=1,j ̸=i wijθj)/wii and ṽi = σ2
e /wii .

▶ vector r is the vector of right-hand side of MME
▶ matrix W is the coefficient matrix of MME



Fully Conditional Posterior Densities of σ2
e

▶ scaled inverted chi-square distribution for σ2
e

σ2
e |y , θ, σ2

u, s, ν ∼ ν̃e s̃e
2χ−2

ν̃e

▶ Parameters of the above distribution are defined as

ν̃e = n + νe

and

s̃e
2 =

[
(y − Xb − Zu)T (y − Xb − Zu) + νes2

e

]
/ν̃e



Fully Conditional Posterior Densities of σ2
u

▶ scaled inverted chi-square distribution for σ2
u

σ2
u|y , θ, σ2

e , s, ν ∼ ν̃u s̃u
2χ−2

ν̃u

▶ Parameters of the above distribution are defined as

ν̃u = q + νu

and

s̃u
2 =

[
uT G−1u + νus2

u

]
/ν̃u



Implementation

▶ Step 1: set starting values for θ, σ2
e and σ2

u
▶ Step 2: draw random number for each component θi of θ from

fully conditional distribution N (θ̃i , ṽi)
▶ Step 3: draw random number for σ2

e from ν̃e s̃e
2χ−2

ν̃e
▶ Step 4: draw random number for σ2

u from ν̃u s̃u
2χ−2

ν̃u
▶ Repeat steps 2-4 many times and store random numbers
▶ Step 5: compute means of random numbers to get Bayesian

estimates of unknowns θ, σ2
e and σ2

u


