Model Selection and Variance Components

Peter von Rohr

2023-04-19

New Trait

- New trait to be considered in breeding program
- \blacktriangleright Why? \rightarrow Trait is of economic importance
- Want to improve average level of trait in a given population
- How is this done?
- What do we have to do?

Background and Context

 Farms/Enterprise use livestock products as base for economic existence

- Improvements of production efficiency improves sustainability
- Short-term:
 - improve management and environment
 - select optimal livestock breed / population for given environment
- Long-term:
 - improve population at genetic level
 - define breeding goal
 - select parents such that offspring are "closer" to goal compared to parents

Genetic Improvement

- Genetic improvement happens between parents and offspring
- Parents pass random sample of alleles to offspring
- Goal: select parents that have many "good" alleles to pass to offspring
- How to find parents with "good" alleles without knowing which genes are important?

\rightarrow Statistical Modeling

Why Statistical Modelling?

Some people believe, they do not need statistics. For them it is enough to look at a diagram

Statistical Modelling Because

Two types of dependencies between physical quantities

- 1. deterministic
- 2. stochastic

Statistical Model

- stochastic systems contains many sources of uncertainty
- statistical models can handle uncertainty
- components of a statistical model
 - response variable y
 - predictor variables x_1, x_2, \ldots, x_k
 - error term e
 - ▶ function *m*(*x*)

How Does A Statistical Model Work?

- predictor variables x₁, x₂,..., x_k are transformed by function m(x) to explain the response variable y
- uncertainty is captured by error term.
- as a formula, for observation i

$$y_i = m(x_i) + e_i$$

Which function m(x)?

class of functions that can be used as m(x) is infinitely large
 restrict to linear functions of predictor variables

Which predictor variables?

 Question, about which predictor variables to use is answered by model selection

Why Model Selection

- Many predictor variables are available
- Are all of them relevant?
- What is the meaning of relevant in this context?

Example Dataset

Animal	Breast Circumference	Body Weight	RandPred
1	176	471	183
2	177	463	178
3	178	481	180
4	179	470	184
5	179	496	179
6	180	491	177
7	181	518	181
8	182	511	178
9	183	510	179
10	184	541	183

No Relevance of Predictors

Relevance of Predictors

Fitting a Regression Model

```
##
## Call:
## lm(formula = 'Body Weight' ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
##
      Min
            1Q Median
                              30
                                    Max
## -31.519 -22.335 -1.019 16.154 44.933
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 439.3918 648.8442 0.677 0.517
## RandPred
               0.3097
                          3,6004 0,086 0,934
##
## Residual standard error: 26.36 on 8 degrees of freedom
## Multiple R-squared: 0.0009241, Adjusted R-squared: -0.124
## F-statistic: 0.007399 on 1 and 8 DF, p-value: 0.9336
```

Fitting a Regression Model II

```
##
## Call:
## lm(formula = 'Body Weight' ~ 'Breast Circumference', data = tbl reg aug)
##
## Residuals:
##
       Min
                10 Median
                                 30
                                         Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                       -1065.115 255.483 -4.169 0.003126 **
## 'Breast Circumference' 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287
```

Multiple Regression

```
##
## Call:
## lm(formula = 'Body Weight' ~ 'Breast Circumference' + RandPred,
      data = tbl reg aug)
##
##
## Residuals:
##
      Min 10 Median 30
                                     Max
## -20.2680 -4.6036 0.8467 7.8715 12.6091
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      -1209.2233 403.0958 -3.000 0.019947 *
## 'Breast Circumference' 8.7084 1.4955 5.823 0.000648 ***
## RandPred
                           0.7646 1.5941 0.480 0.646094
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.66 on 7 degrees of freedom
## Multiple R-squared: 0.829, Adjusted R-squared: 0.7802
## F-statistic: 16.97 on 2 and 7 DF, p-value: 0.002066
```

Why not taking all predictors?

- Additional parameters must be estimated from data
- Predictive power decreased with too many predictors (cannot be shown for this data set, because too few data points)
- Bias-variance trade-off

Bias-variance trade-off

Assume, we are looking for optimum prediction

$$s_i = \sum_{r=1}^q \hat{\beta}_{j_r} x_{ij_r}$$

with q relevant predictor variables

Average mean squared error of prediction s_i

$$MSE = n^{-1} \sum_{i=1}^{n} E\left[(m(x_i) - s_i)^2\right]$$

where m(.) denotes the linear function of the unknown true model.

Bias-variance trade-off II

MSE can be split into two parts

$$MSE = n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2 + n^{-1} \sum_{i=1}^{n} var(s_i)$$

where $n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2$ is called the squared **bias**

- Increasing q leads to reduced bias but increased variance (var(s_i))
- Hence, find s_i such that MSE is minimal
- Problem: cannot compute MSE because m(.) is not known

 \rightarrow estimate MSE

Mallows C_p statistic

- For a given model *M*, *SSE*(*M*) stands for the residual sum of squares.
- MSE can be estimated as

$$\widehat{\textit{MSE}} = \textit{n}^{-1}\textit{SSE}(\mathcal{M}) - \hat{\sigma}^2 + 2\hat{\sigma}^2|\mathcal{M}|/\textit{n}$$

where $\hat{\sigma}^2$ is the estimate of the error variance of the full model, $SSE(\mathcal{M})$ is the residual sum of squares of the model \mathcal{M} , *n* is the number of observations and $|\mathcal{M}|$ stands for the number of predictors in \mathcal{M}

$$C_p(\mathcal{M}) = rac{SSE(\mathcal{M})}{\hat{\sigma}^2} - n + 2|\mathcal{M}|$$

Searching The Best Model

- Exhaustive search over all sub-models might be too expensive
- For p predictors there are $2^p 1$ sub-models
- With p = 16, we get 6.5535×10^4 sub-models
- \rightarrow step-wise approaches

Forward Selection

- 1. Start with smallest sub-model \mathcal{M}_0 as current model
- 2. Include predictor that reduces SSE the most to current model
- 3. Repeat step 2 until all predictors are chosen
- \rightarrow results in sequence $\mathcal{M}_0\subseteq \mathcal{M}_1\subseteq \mathcal{M}_2\subseteq \dots$ of sub-models
 - 4. Out of sequence of sub-models choose the one with minimal C_p

Backward Selection

- 1. Start with full model \mathcal{M}_0 as the current model
- 2. Exclude predictor variable that increases SSE the least from current model
- Repeat step 2 until all predictors are excluded (except for intercept)
- \rightarrow results in sequence $\mathcal{M}_0 \supseteq \mathcal{M}_1 \supseteq \mathcal{M}_2 \supseteq \ldots$ of sub-models
 - 4. Out of sequence choose the one with minimal C_p

Considerations

- Whenever possible, choose backward selection, because it leads to better results
- If $p \ge n$, only forward is possible, but then consider LASSO

Alternative Selection Criteria

- ► AIC or BIC, requires distributional assumptions.
- AIC is implemented in MASS::stepAIC()
- Adjusted R² is a measure of goodness of fit, but sometimes is not conclusive when comparing two models
- Try in exercise

Genetic Variation

- Requirement for trait to be considered in breeding goal
- Breeding means improvement of next generation via selection and mating
- Only genetic (additive) components are passed to offspring
- Selection should be based on genetic component of trait
- Selection only possible with genetic variation

 \rightarrow genetic variation indicates how good characteristics are passed from parents to offspring

 \rightarrow measured by **heritability** $h^2 = \frac{\sigma_a^2}{\sigma_a^2}$

Two Traits

no variation

with variation

Problems

- Genetic components cannot be observed or measured
- Must be estimated from data
- Data are mostly phenotypic
- \rightarrow topic of variance components estimation
 - Model based, that means connection between phenotypic measure and genetic component are based on certain model

$$p = g + e$$

with cov(g, e) = 0

• **Goal**: separate variation due to $g(\sigma_a^2)$ from phenotypic variation

Example of Variance Components Separation

- Estimation of repeatability
- Given repeated measurements of same trait at the same animal
- Repeatability means variation of measurements at the same animal is smaller than variation between measurements at different animals

Repeatability Plot

Model

$$y_{ij} = \mu + t_i + \epsilon_{ij}$$

where

- y_{ij} measurement j of animal i
- μ expected value of y
- t_i deviation of y_{ij} from μ attributed to animal i
- ϵ_{ij} measurement error

Estimation Of Variance Components

σ_ε² = E(ε_{ij}²): variance component attributed to ε-effects
 σ_y² = σ_t² + σ_ε²

Repeatability w defined as:

$$w = \frac{\sigma_t^2}{\sigma_t^2 + \sigma_\epsilon^2}$$

 \rightarrow estimate of σ_t^2 needed

Analysis Of Variance (ANOVA)

where

$$SSQ(t) = \left[\frac{1}{n}\sum_{i=1}^{r}\left(\sum_{j=1}^{n}y_{ij}\right)^{2}\right] - \left(\sum_{i=1}^{r}\sum_{j=1}^{n}y_{ij}\right)^{2}/N$$

$$SSQ(\epsilon) = \sum_{i=1}^{r} \sum_{j=1}^{n} y_{ij}^{2} - \left[\frac{1}{n} \sum_{i=1}^{r} \left(\sum_{j=1}^{n} y_{ij} \right)^{2} \right]$$

Zahlenbeispiel

Df Sum Sq Mean Sq F value Pr(>F)
Bull 9 286.7 31.85 13.85 8.74e-07 ***
Residuals 20 46.0 2.30
--## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Setting expected values of Mean Sq equal to estimates of variance components

$$\hat{\sigma}_{\epsilon}^2 = 2.3 \text{ and } \hat{\sigma}_t^2 = rac{31.85 - 2.3}{3} = 9.85$$

Repeatability

$$\hat{w} = \frac{\hat{\sigma}_t^2}{\hat{\sigma}_t^2 + \hat{\sigma}_\epsilon^2} = 0.81$$

Same Strategy for Sire Model

Sire model is a mixed linear effects model with sire effects s as random components

$$y = Xb + Zs + e$$

In case where sires are not related, \$var(s) = I * σ_s²
 From σ_s², we get genetic additive variance as σ_a² = 4 * σ_s²

ANOVA

Effect	Degrees of Freedom	Sum Sq	Mean Sq	E(Mean Sq)
Sire (s b)	r – 1	SSQ(s b)	SSQ(s b)/(r-1)	$\sigma_e^2 + k * \sigma_s^2$
Residual (e)	N – r	SSQ(e)	SSQ(e)/(N-r)	σ_e^2

with

$$k = \frac{1}{r-1} \left[N - \frac{\sum_{i=1}^{r} n_i^2}{N} \right]$$

Maximum Likelihood (ML)

Likelihood

$$L(\theta) = f(y|\theta)$$

Normal distribution

$$L(\theta) = (2\pi)^{-1/2n} \sigma^{-n} |H|^{-1/2} * exp\left\{-\frac{1}{2\sigma^2}(y - Xb)^T H^{-1}(y - Xb)\right\}$$

with $var(y) = H * \sigma^2$ and $\theta^T = \begin{bmatrix} b & \sigma^2 \end{bmatrix}$

Maximization of Likelihood

 $\blacktriangleright \text{ Set } \lambda = \textit{logL}$

• Compute partial derivatives of λ with respect to all unknowns

 $\frac{\partial \lambda}{\partial b}$ $\frac{\partial \lambda}{\partial \sigma^2}$

Set partial derivatives to 0 and solve for unknowns
 Use solutions as estimates

Restricted Maximum Likelihood (REML)

- ▶ Problem with ML: estimate of σ^2 depends on $b \rightarrow$ undesirable
- Do transformations Sy and Qy
- (i) The matrix S has rank n t and the matrix Q has rank t
- (ii) The result of the two transformations are independent, that means cov(Sy, Qy) = 0 which is met when $SHQ^T = 0$
- (iii) The matrix S is chosen such that E(Sy) = 0 which means SX = 0
- (iv) The matrix QX is of rank t, so that every linear function of the elements of Qy estimate a linear function of b.

From (i) and (ii) it follows that the likelihood L of y is the product of the likelihoods of Sy (L*) and Qy (L**) that means

$$\lambda = \lambda^* + \lambda^{**}$$

 \blacktriangleright Variance components are estimated from λ^* which will then be independent of b

Bayesian Estimation

- Proposed already in the 80's
- Full implementation only in 1993
- Requirements:
 - cheap computing and
 - good pseudo-random number generators
- Bayesian estimation is based on conditional posterior distribution of unknowns given the knowns
- Conditional posterior distribution is computed from prior distribution of unknowns times the likelihood

Model

Univariate Gaussian linear mixed model

$$y = Xb + Zu + e$$

where

- y vector of observations (length n)
- b vector of fixed effects (length p)
- u vector of random breeding values (length q)
- *e* vector of random residuals (length *n*)
- $X \quad n \times p$ design matrix linking fixed effects to observations
- $Z \quad n \times q \text{ design matrix linking breeding} \\ \text{values to observations}$

Data generating distribution

$$y|b, u, \sigma_e^2 \sim \mathcal{N}(Xb + Zu, I * \sigma_e^2)$$

where I is a $n \times n$ identity matrix and σ_e^2 is the variance of the random residuals.

Priors

- Prior distributions must be specified for all unknowns
- Unknowns in our example are: b, u, σ_e^2 and σ_u^2
- Prior distribution for
 - *b* is flat, i.e. $p(b) \propto c$
 - *u* Normal distribution as $u|G, \sigma_u^2 \sim N(0, G * \sigma_u^2)$
 - σ_e^2 scaled inverse χ^2 : $p(\sigma_e^2|\nu_e, s_e^2) \propto (\sigma_e^2)^{-\nu_e/2-1} exp(-\frac{1}{2}\nu_e s_e^2/\sigma_e^2)$ • σ_u^2 : $p(\sigma_u^2|\nu_u, s_u^2) \propto (\sigma_u^2)^{-\nu_u/2-1} exp(-\frac{1}{2}\nu_u s_u^2/\sigma_u^2)$
- ▶ ν_e , ν_s , s_e^2 and s_u^2 are called hyper-parameters and must be determined

Additional Terms

$$\theta^{\mathsf{T}} = (b^{\mathsf{T}}, u^{\mathsf{T}}) = (\theta_1, \theta_2, \dots, \theta_N)$$

$$\theta_{-i} = (\theta_1, \theta_2, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_N)$$

$$s^{\mathsf{T}} = (s_u^2, s_e^2)$$

 and

$$\nu^{\mathsf{T}} = (\nu_u, \nu_e)$$

Joint Posterior Density

The joint posterior distribution can be written as

$$p(\theta, \sigma_u^2, \sigma_e^2 | y, s, \nu) \propto p(\theta) * p(\sigma_u^2 | \nu_u, s_u^2) * p(\sigma_e^2 | \nu_e, s_e^2) * p(y | \theta, \sigma_e^2)$$

Fully Conditional Posterior Densities of θ

 Density of every single unknown component when setting all other components as known

$$heta_i | y, heta_{-i}, \sigma_u^2, \sigma_e^2, s,
u \sim \mathcal{N}(ilde{ heta}_i, ilde{ extsf{v}}_i)$$

where
$$\tilde{\theta}_i = (r_i - \sum_{j=1, j \neq i}^N w_{ij}\theta_j)/w_{ii}$$
 and $\tilde{v}_i = \sigma_e^2/w_{ii}$.

vector r is the vector of right-hand side of MME
 matrix W is the coefficient matrix of MME

Fully Conditional Posterior Densities of σ_e^2

▶ scaled inverted chi-square distribution for σ_e^2

$$\sigma_e^2 | y, \theta, \sigma_u^2, s, \nu \sim \tilde{\nu_e} \tilde{s_e}^2 \chi_{\tilde{\nu_e}}^{-2}$$

Parameters of the above distribution are defined as

$$\tilde{\nu_e} = n + \nu_e$$

and

$$\tilde{s_e}^2 = \left[(y - Xb - Zu)^T (y - Xb - Zu) + \nu_e s_e^2 \right] / \tilde{\nu_e}$$

Fully Conditional Posterior Densities of σ_{μ}^2

• scaled inverted chi-square distribution for σ_u^2

$$\sigma_u^2 | \mathbf{y}, \theta, \sigma_e^2, \mathbf{s}, \nu \sim \tilde{\nu_u} \tilde{s_u}^2 \chi_{\tilde{\nu_u}}^{-2}$$

Parameters of the above distribution are defined as

$$\tilde{\nu_u} = q + \nu_u$$

and

$$\tilde{s_u}^2 = \left[u^T G^{-1} u + \nu_u s_u^2 \right] / \tilde{\nu_u}$$

Implementation

- Step 1: set starting values for θ , σ_e^2 and σ_u^2
- Step 2: draw random number for each component θ_i of θ from fully conditional distribution N(θ̃_i, ṽ_i)
- Step 3: draw random number for σ_e^2 from $\tilde{\nu}_e \tilde{s}_e^2 \chi_{\tilde{\nu}_e}^{-2}$
- Step 4: draw random number for σ_u^2 from $\tilde{\nu}_u \tilde{s}_u^2 \chi_{\tilde{\nu}_u}^{-2}$
- Repeat steps 2-4 many times and store random numbers
- Step 5: compute means of random numbers to get Bayesian estimates of unknowns θ , σ_e^2 and σ_u^2