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Breeding Program
Breeding Goal

- economic
- biological
- tactical
- ethic

Performance Test
- Which traits
- Which animals

Breeding Value Prediction
- traits
- pedigree
- method and parameter

Selection and Mating

Selection Response

Reproduction Technologies



New Trait

▶ New trait to be considered in breeding program
▶ Why? → Trait is of economic importance
▶ Want to improve average level of trait in a given population
▶ How is this done?
▶ What do we have to do?



Background and Context

▶ Farms/Enterprise use livestock products as base for economic
existence

▶ Improvements of production efficiency improves sustainability
▶ Short-term:

▶ improve management and environment
▶ select optimal livestock breed / population for given

environment
▶ Long-term:

▶ improve population at genetic level
▶ define breeding goal
▶ select parents such that offspring are “closer” to goal

compared to parents



Genetic Improvement

▶ Genetic improvement happens between parents and offspring
▶ Parents pass random sample of alleles to offspring
▶ Goal: select parents that have many “good” alleles to pass to

offspring
▶ Value of alleles quantified by breeding value
▶ How to find parents with “good” alleles without knowing

which genes are important?

→ Predict breeding value using Statistical Modeling



Genotype and Phenotype
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Molecular Biology

Environment: ei

Phenotype: yi = gi + ei

Genotype: gi 

▶ Selection based on phenotypes: in-efficient
▶ Instead: use statistical model to predict breeding value



Selection Criterion
▶ Quantify value of alleles passed from parent to offspring
▶ Requires decomposition of effect of genotype on phenotype
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Model Based on Decomposition of Genotype

▶ Genotype is decomposed

Breeding 
value
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Statistical Model

▶ stochastic systems contains many sources of uncertainty
▶ statistical models can handle uncertainty
▶ components of a statistical model

▶ response variable y
▶ predictor variables x1, x2, . . . , xk (fixed), u (random)
▶ error term e
▶ function m(x)



How Does A Statistical Model Work?

▶ predictor variables x1, x2, . . . , xk are transformed by function
m(x) to explain the response variable y

▶ uncertainty is captured by error term.
▶ as a formula, for observation i

yi = m(xi) + ei



Which function m(x)?

▶ class of functions that can be used as m(x) is infinitely large
▶ restrict to linear functions of model parameter (b0 and b1),

e.g.

yi = b0 + b1 ∗ xi + ei



Which predictor variables?

▶ In genetic evaluation a large variety of information is available
which could be used as predictors

▶ Question, about which predictor variables to use is answered
by model selection



Why Model Selection

▶ Many predictor variables are available
▶ Are all of them relevant?
▶ What is the meaning of relevant in this context?



Example Dataset

Animal Breast Circumference Body Weight RandPred

1 176 471 178
2 177 463 177
3 178 481 182
4 179 470 181
5 179 496 184
6 180 491 184
7 181 518 181
8 182 511 182
9 183 510 177

10 184 541 181
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Fitting a Regression Model

##
## Call:
## lm(formula = ‘Body Weight‘ ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.867 -17.921 -9.036 19.827 45.133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.511 598.111 0.156 0.880
## RandPred 2.223 3.310 0.672 0.521
##
## Residual standard error: 25.66 on 8 degrees of freedom
## Multiple R-squared: 0.05338, Adjusted R-squared: -0.06495
## F-statistic: 0.4511 on 1 and 8 DF, p-value: 0.5207



Fitting a Regression Model II

##
## Call:
## lm(formula = ‘Body Weight‘ ~ ‘Breast Circumference‘, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## ‘Breast Circumference‘ 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287



Multiple Regression

##
## Call:
## lm(formula = ‘Body Weight‘ ~ ‘Breast Circumference‘ + RandPred,
## data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.817 -6.946 -1.337 9.196 13.118
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1218.2339 352.3805 -3.457 0.010588 *
## ‘Breast Circumference‘ 8.5321 1.4885 5.732 0.000711 ***
## RandPred 0.9879 1.4983 0.659 0.530785
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 11.5 on 7 degrees of freedom
## Multiple R-squared: 0.8337, Adjusted R-squared: 0.7862
## F-statistic: 17.55 on 2 and 7 DF, p-value: 0.001874



Which model is better?

Why not taking all predictors?

▶ Additional parameters must be estimated from data
▶ Predictive power decreased with too many predictors (cannot

be shown for this data set, because too few data points)
▶ Bias-variance trade-off



Bias-variance trade-off

▶ Assume, we are looking for optimum prediction

si =
q∑

r=1
β̂jr xijr

with q relevant predictor variables

▶ Average mean squared error of prediction si

MSE = n−1
n∑

i=1
E

[
(m(xi) − si)2

]
where m(.) denotes the linear function of the unknown true model.



Bias-variance trade-off II

▶ MSE can be split into two parts

MSE = n−1
n∑

i=1
(E [si ] − m(xi))2 + n−1

n∑
i=1

var(si)

where n−1 ∑n
i=1 (E [si ] − m(xi))2 is called the squared bias

▶ Increasing q leads to reduced bias but increased variance
(var(si))

▶ Hence, find si such that MSE is minimal
▶ Problem: cannot compute MSE because m(.) is not known

→ estimate MSE



Mallows Cp statistic

▶ For a given model M, SSE (M) stands for the residual sum of
squares.

▶ MSE can be estimated as

M̂SE = n−1SSE (M) − σ̂2 + 2σ̂2|M|/n

where σ̂2 is the estimate of the error variance of the full model,
SSE (M) is the residual sum of squares of the model M, n is the
number of observations and |M| stands for the number of
predictors in M

Cp(M) = SSE (M)
σ̂2 − n + 2|M|



Searching The Best Model

▶ Exhaustive search over all sub-models might be too expensive
▶ For p predictors there are 2p − 1 sub-models
▶ With p = 16, we get 6.5535 × 104 sub-models

→ step-wise approaches



Forward Selection

1. Start with smallest sub-model M0 as current model
2. Include predictor that reduces SSE the most to current model
3. Repeat step 2 until all predictors are chosen

→ results in sequence M0 ⊆ M1 ⊆ M2 ⊆ . . . of sub-models

4. Out of sequence of sub-models choose the one with minimal
Cp



Backward Selection

1. Start with full model M0 as the current model
2. Exclude predictor variable that increases SSE the least from

current model
3. Repeat step 2 until all predictors are excluded (except for

intercept)

→ results in sequence M0 ⊇ M1 ⊇ M2 ⊇ . . . of sub-models

4. Out of sequence choose the one with minimal Cp



Considerations

▶ Whenever possible, choose backward selection, because it
leads to better results

▶ If p ≥ n, only forward is possible, but then consider LASSO



Alternative Model Selection Criteria

▶ AIC or BIC, requires distributional assumptions.
▶ AIC is implemented in MASS::stepAIC()
▶ Adjusted R2 is a measure of goodness of fit, but sometimes is

not conclusive when comparing two models
▶ Try in exercise



Genetic Variation

▶ Concerns random effects of model, usually given as breeding
values

▶ Requirement for trait to be considered in breeding goal
▶ Breeding means improvement of next generation via selection

and mating
▶ Only genetic (additive) components are passed to offspring
▶ Selection should be based on genetic component of trait
▶ Selection only possible with genetic variation

→ genetic variation indicates how good characteristics are passed
from parents to offspring

→ measured by heritability h2 = σ2
a

σ2
p



Two Traits
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Problems

▶ Genetic components cannot be observed or measured
▶ Must be estimated from data
▶ Data are mostly phenotypic

→ topic of variance components estimation

▶ Model based, that means connection between phenotypic
measure and genetic component are based on certain model

p = g + e

with cov(g , e) = 0

▶ Goal: separate variation due to g (σ2
a) from phenotypic

variation



Example of Variance Components Separation

▶ Estimation of repeatability
▶ Given repeated measurements of same trait at the same

animal
▶ Repeatability means variation of measurements at the same

animal is smaller than variation between measurements at
different animals
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Model

yij = µ + ti + ϵij

where
yij measurement j of animal i
µ expected value of y
ti random deviation of yij from µ attributed to animal i
ϵij measurement error



Animal Model

▶ trait of interest as response variable (y)
▶ fixed effects (b) as known part of environment
▶ random animal effect, corresponds to breeding values (u)

y = Xb + Zu + e

with

▶ vector e as random residuals and
▶ matrices X and Z as design matrices



Estimates and Predictions

▶ solution leading to estimates of fixed effects

b̂ = (XT V −1X )−XT V −1y

▶ predictions for random effects

û = UZT V −1(y − Xb̂)

with

▶ U = var(u)
▶ V = var(y)



Mixed Model Equations

Equivalent solutions are obtained via

[
XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + U−1

] [
β̂
û

]
=

[
XT R−1y
ZT R−1y

]

with

▶ U = A ∗ σ2
u

where A is pedigree-based relationship matrix and σ2
u the genetic

additive variance



Single-Step Genomic Breeding Values

▶ Assume all animals have genotypes

y = Xb + Zg + e

[
XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + H−1

] [
β̂
ĝ

]
=

[
XT R−1y
ZT R−1y

]

▶ H = G ∗ σ2
u

where G is the genomic relationship matrix and σ2
u the genetic

additive variance



Genomic Relationship

▶ Breeding value model uses genomic breeding values g as
random effects

▶ Variance-covariance matrix of g are proposed to be
proportional to matrix G

var(g) = H = G ∗ σ2
g

where G is called genomic relationship matrix (GRM)



Desired Properties of G

▶ genomic breeding values g are linear combinations of
SNP-effects q: g = ZSNP · q

▶ g as deviations, that means E (g) = 0
▶ var(g) as product between G and σ2

g where G is the genomic
relationship matrix

▶ G should be similar to A



Change of Identity Concept
G based on IBS, where A is based on IBD

A1A2 A1A2 A1A3 A1A3

A1A2 A1A3 A1A3

A1A1 A3A3

IBD IBS



Result
Combining all properties:
▶ Linear combination

var(g) = var(W · q) = W · var(q) · W T = WW T σ2
q

with W = ZSNP − S where S contains corrections of 2p − 1 and p
is the minor allele frequency
▶ Genetic variance var(g) explained by marker effects

var(g) = WW T σ2
q = G ∗ σ2

q ∗
k∑

j=1
(1 − 2pj(1 − pj))

▶ Solve for G

G = WW T∑k
j=1(1 − 2pj(1 − pj))


