Genetic Evaluation

Peter von Rohr

2024-05-15

New Trait

- ▶ New trait to be considered in breeding program
- \triangleright Why? \rightarrow Trait is of economic importance
- ▶ Want to improve average level of trait in a given population
- ▶ How is this done?
- ▶ What do we have to do?

Background and Context

▶ Farms/Enterprise use livestock products as base for economic existence

- ▶ Improvements of production efficiency improves sustainability
- ▶ Short-term:
	- ▶ improve management and environment
	- \blacktriangleright select optimal livestock breed / population for given environment
- ▶ Long-term:
	- ▶ improve population at genetic level
	- \blacktriangleright define breeding goal
	- ▶ select parents such that offspring are "closer" to goal compared to parents

Genetic Improvement

- ▶ Genetic improvement happens between parents and offspring
- ▶ Parents pass random sample of alleles to offspring
- ▶ Goal: select parents that have many "good" alleles to pass to offspring
- ▶ Value of alleles quantified by breeding value
- ▶ How to find parents with "good" alleles without knowing which genes are important?
- \rightarrow Predict breeding value using **Statistical Modeling**

Genotype and Phenotype

Genotype and Phenotype

▶ Selection based on phenotypes: in-efficient

▶ Instead: use statistical model to predict breeding value

Selection Criterion

- ▶ Quantify value of alleles passed from parent to offspring
- ▶ Requires decomposition of effect of genotype on phenotype

Model Based on Decomposition of Genotype

▶ Genotype is decomposed

Statistical Model

- ▶ stochastic systems contains many sources of uncertainty
- ▶ statistical models can handle uncertainty
- ▶ components of a statistical model
	- \blacktriangleright response variable y
	- \triangleright predictor variables x_1, x_2, \ldots, x_k (fixed), u (random)
	- ▶ error term e
	- \blacktriangleright function $m(x)$

How Does A Statistical Model Work?

- \blacktriangleright predictor variables x_1, x_2, \ldots, x_k are transformed by function $m(x)$ to explain the response variable y
- ▶ uncertainty is captured by error term.
- \blacktriangleright as a formula, for observation *i*

$$
y_i = m(x_i) + e_i
$$

Which function $m(x)$?

 \triangleright class of functions that can be used as $m(x)$ is infinitely large restrict to linear functions of model parameter $(b_0 \text{ and } b_1)$, e.g.

$$
y_i = b_0 + b_1 * x_i + e_i
$$

Which predictor variables?

- \blacktriangleright In genetic evaluation a large variety of information is available which could be used as predictors
- ▶ Question, about which predictor variables to use is answered by model selection

Why Model Selection

- ▶ Many predictor variables are available
- ▶ Are all of them relevant?
- ▶ What is the meaning of relevant in this context?

Example Dataset

No Relevance of Predictors

Relevance of Predictors

tbl_reg_aug\$'Breast Circumference'

Fitting a Regression Model

```
##
## Call:
## lm(formula = 'Body Weight' ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.867 -17.921 -9.036 19.827 45.133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.511 598.111 0.156 0.880
## RandPred 2.223 3.310 0.672 0.521
##
## Residual standard error: 25.66 on 8 degrees of freedom
## Multiple R-squared: 0.05338, Adjusted R-squared: -0.06495
## F-statistic: 0.4511 on 1 and 8 DF, p-value: 0.5207
```
Fitting a Regression Model II

```
##
## Call:
## lm(formula = 'Body Weight' ~ 'Breast Circumference', data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## 'Breast Circumference' 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287
```
Multiple Regression

```
##
## Call:
## lm(formula = 'Body Weight' ~ 'Breast Circumference' + RandPred,
\## data = tbl reg aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.817 -6.946 -1.337 9.196 13.118
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
                    -1218.2339 352.3805 -3.457 0.010588 *## 'Breast Circumference' 8.5321 1.4885 5.732 0.000711 ***
## RandPred 0.9879 1.4983 0.659 0.530785
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.5 on 7 degrees of freedom
## Multiple R-squared: 0.8337, Adjusted R-squared: 0.7862
## F-statistic: 17.55 on 2 and 7 DF, p-value: 0.001874
```
Why not taking all predictors?

- ▶ Additional parameters must be estimated from data
- ▶ Predictive power decreased with too many predictors (cannot be shown for this data set, because too few data points)
- \blacktriangleright Bias-variance trade-off

Bias-variance trade-off

▶ Assume, we are looking for optimum prediction

$$
s_i = \sum_{r=1}^q \hat{\beta}_{j_r} x_{ij_r}
$$

with q relevant predictor variables

 \blacktriangleright Average mean squared error of prediction s_i

$$
MSE = n^{-1} \sum_{i=1}^{n} E [(m(x_i) - s_i)^2]
$$

where m(*.*) denotes the linear function of the unknown true model.

Bias-variance trade-off II

\triangleright MSE can be split into two parts

$$
MSE = n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2 + n^{-1} \sum_{i=1}^{n} var(s_i)
$$

where $n^{-1} \sum_{i=1}^n \left(E \left[s_i \right] - m(x_i) \right)^2$ is called the squared $\boldsymbol{\mathsf{bias}}$

- \blacktriangleright Increasing q leads to reduced bias but increased variance $\left(\textit{var}(s_i)\right)$
- \blacktriangleright Hence, find s_i such that MSE is minimal
- ▶ Problem: cannot compute MSE because m(.) is not known

\rightarrow estimate MSE

Mallows C_p statistic

- \blacktriangleright For a given model M, SSE(M) stands for the residual sum of squares.
- ▶ MSE can be estimated as

$$
\widehat{\text{MSE}} = n^{-1} \text{SSE}(\mathcal{M}) - \hat{\sigma}^2 + 2\hat{\sigma}^2 |\mathcal{M}|/n
$$

where $\hat{\sigma}^2$ is the estimate of the error variance of the full model, $SSE(\mathcal{M})$ is the residual sum of squares of the model \mathcal{M} , n is the number of observations and $|\mathcal{M}|$ stands for the number of predictors in M

$$
C_p(\mathcal{M}) = \frac{\mathsf{SSE}(\mathcal{M})}{\hat{\sigma}^2} - n + 2|\mathcal{M}|
$$

Searching The Best Model

- ▶ Exhaustive search over all sub-models might be too expensive
- ▶ For p predictors there are $2^p 1$ sub-models
- With $p = 16$, we get 6.5535×10^4 sub-models
- \rightarrow step-wise approaches

Forward Selection

- 1. Start with smallest sub-model \mathcal{M}_0 as current model
- 2. Include predictor that reduces SSE the most to current model
- 3. Repeat step 2 until all predictors are chosen
- \rightarrow results in sequence $\mathcal{M}_0 \subseteq \mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \dots$ of sub-models
	- 4. Out of sequence of sub-models choose the one with minimal C_p

Backward Selection

- 1. Start with full model \mathcal{M}_0 as the current model
- 2. Exclude predictor variable that increases SSE the least from current model
- 3. Repeat step 2 until all predictors are excluded (except for intercept)
- \rightarrow results in sequence $\mathcal{M}_0 \supseteq \mathcal{M}_1 \supseteq \mathcal{M}_2 \supseteq \dots$ of sub-models
	- 4. Out of sequence choose the one with minimal C_p

Considerations

- ▶ Whenever possible, choose **backward** selection, because it leads to better results
- ▶ If $p \ge n$, only forward is possible, but then consider LASSO

Alternative Model Selection Criteria

- ▶ AIC or BIC, requires distributional assumptions.
- ▶ AIC is implemented in MASS:: stepAIC()
- Adjusted R^2 is a measure of goodness of fit, but sometimes is not conclusive when comparing two models
- \blacktriangleright Try in exercise

Genetic Variation

- ▶ Concerns random effects of model, usually given as breeding values
- ▶ Requirement for trait to be considered in breeding goal
- ▶ Breeding means improvement of next generation via selection and mating
- ▶ Only genetic (additive) components are passed to offspring
- ▶ Selection should be based on genetic component of trait
- \triangleright Selection only possible with genetic variation

 \rightarrow genetic variation indicates how good characteristics are passed from parents to offspring

$$
\rightarrow
$$
 measured by **heritability**
$$
h^2 = \frac{\sigma_a^2}{\sigma_p^2}
$$

Two Traits

Problems

- ▶ Genetic components cannot be observed or measured
- \blacktriangleright Must be estimated from data
- \blacktriangleright Data are mostly phenotypic
- \rightarrow topic of variance components estimation
	- \blacktriangleright Model based, that means connection between phenotypic measure and genetic component are based on certain model

$$
p=g+e
$$

with $cov(g, e) = 0$

Goal: separate variation due to $g(\sigma_a^2)$ from phenotypic variation

Example of Variance Components Separation

- \blacktriangleright Estimation of repeatability
- ▶ Given repeated measurements of same trait at the same animal
- ▶ Repeatability means variation of measurements at the same animal is smaller than variation between measurements at different animals

Repeatability Plot

Model

$$
y_{ij} = \mu + t_i + \epsilon_{ij}
$$

where

- y_{ij} measurement *j* of animal *i*
- μ expected value of y
- t_i random deviation of y_{ij} from μ attributed to animal *i*
- ϵ_{ij} measurement error

Animal Model

- \triangleright trait of interest as response variable (y)
- \triangleright fixed effects (b) as known part of environment
- \blacktriangleright random animal effect, corresponds to breeding values (u)

$$
y = Xb + Zu + e
$$

with

 \blacktriangleright vector e as random residuals and

 \triangleright matrices X and Z as design matrices

Estimates and Predictions

▶ solution leading to estimates of fixed effects

$$
\hat{b} = (XT V-1 X)- XT V-1 y
$$

▶ predictions for random effects

$$
\hat{u} = UZ^T V^{-1} (y - X\hat{b})
$$

with

$$
U = var(u)
$$

$$
V = var(y)
$$

Mixed Model Equations

Equivalent solutions are obtained via

$$
\begin{bmatrix} X^{T}R^{-1}X & X^{T}R^{-1}Z \\ Z^{T}R^{-1}X & Z^{T}R^{-1}Z + U^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^{T}R^{-1}y \\ Z^{T}R^{-1}y \end{bmatrix}
$$

with

$$
\blacktriangleright U = A * \sigma_u^2
$$

where A is pedigree-based relationship matrix and σ^2_u the genetic additive variance

Single-Step Genomic Breeding Values

▶ Assume all animals have genotypes

$$
y = Xb + Zg + e
$$

$$
\begin{bmatrix} X^T R^{-1} X & X^T R^{-1} Z \\ Z^T R^{-1} X & Z^T R^{-1} Z + H^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} X^T R^{-1} y \\ Z^T R^{-1} y \end{bmatrix}
$$

\n
$$
\triangleright H = G * \sigma_u^2
$$

where G is the genomic relationship matrix and σ^2_u the genetic additive variance

Genomic Relationship

- \triangleright Breeding value model uses genomic breeding values g as random effects
- \triangleright Variance-covariance matrix of g are proposed to be proportional to matrix G

$$
var(g) = H = G * \sigma_g^2
$$

where G is called **genomic relationship matrix** (GRM)

Desired Properties of G

- \triangleright genomic breeding values g are linear combinations of SNP-effects q: $g = Z_{SNP} \cdot q$
- ▶ g as deviations, that means $E(g) = 0$
- ▶ var(g) as product between G and σ_g^2 where G is the genomic relationship matrix
- \triangleright G should be similar to A

Change of Identity Concept

G based on IBS, where A is based on IBD

Result

Combining all properties:

▶ Linear combination

$$
var(g) = var(W \cdot q) = W \cdot var(q) \cdot W^{T} = WW^{T} \sigma_{q}^{2}
$$

with $W = Z_{SNP} - S$ where S contains corrections of $2p - 1$ and p is the minor allele frequency

▶ Genetic variance $var(g)$ explained by marker effects

$$
var(g) = WW^{T} \sigma_{q}^{2} = G * \sigma_{q}^{2} * \sum_{j=1}^{k} (1 - 2p_{j}(1 - p_{j}))
$$

 \blacktriangleright Solve for G

$$
G = \frac{WW^T}{\sum_{j=1}^k (1-2p_j(1-p_j))}
$$